Research Article

Sustainability competencies in mathematics education: insights from individual and collective modelling

Carolina Guerrero-Ortiz 1 * , Matías Camacho-Machín 2 , Fernando Hitt 3 4
More Detail
1 Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaíso, CHILE2 Universidad de La Laguna, Tenerife, SPAIN3 Université du Québec à Montréal, Montréal, QC, CANADA4 Centro de Investigación y de Estudios Avanzados, Mexico City, MEXICO* Corresponding Author
European Journal of Science and Mathematics Education, 14(1), January 2026, 85-103, https://doi.org/10.30935/scimath/17625
Published: 22 December 2025
OPEN ACCESS   522 Views   438 Downloads
Download Full Text (PDF)

ABSTRACT

Education for sustainable development (ESD) involves addressing complex problems that require the development of mathematical abilities and general competencies. In the context of secondary mathematics teachers training, this challenge should be supported by a holistic process that considers theoretical frameworks on sustainability from a mathematics education perspective. In this work, we analyze and adapt general ESD through a particular approach from mathematics education. Key characteristics relevant to the development of mathematics teaching activities are identified and proposed. Then we present experimental results in a teacher training course, identifying the sustainability competencies that emerge and their relationship with mathematical abilities. The findings highlight the importance of generating more activities that reinforce the anticipatory competency in pre-service teachers for future sustainability scenarios.

CITATION (APA)

Guerrero-Ortiz, C., Camacho-Machín, M., & Hitt, F. (2026). Sustainability competencies in mathematics education: insights from individual and collective modelling. European Journal of Science and Mathematics Education, 14(1), 85-103. https://doi.org/10.30935/scimath/17625

REFERENCES

  1. Alsina, Á. (2022). On integrating mathematics education and sustainability in teacher training: Why, to what end and how? In D. Ortega-Sánchez (Ed.), Controversial issues and social problems for an integrated disciplinary teaching. Integrated science, vol 8 (pp. 9-21). Springer. https://doi.org/10.1007/978-3-031-08697-7_2
  2. Alsina, Á., & Silva-Hormazábal, M. (2023). Promoting mathematics teacher education for sustainability through a STEAM approach. AIEM–Avances de Investigación en Educación Matemática, 23, 105-125. https://doi.org/10.35763/aiem23.5402
  3. Alsina, Á., & Vásquez, C. (2024). Professional development and teacher agency in mathematics teacher education for sustainability. Mathematics Education Research Journal, 36, 1-24.
  4. Blum, W., Galbraith, P., Henn, H., & Niss, M. (2007). Modelling and applications in mathematics education. The 14th ICMI study. Springer. https://doi.org/10.1007/978-0-387-29822-1
  5. Boucher, C., Marotte, L., & Coupal M. (2007). Intersection mathématique [Mathematical intersection]. Chenelière Education.
  6. Brundiers, K., Barth, M., Cebrián, G., Cohen, M., Diaz, L., Doucette-Remington, S., Dripss, W., Habron, G., Harre, N., Jarchow, M., Losch, K., Michel, J., Mochizuki, Y., Rieckmann, M., Parnell, R., Walker, P., & Zint, M. (2021). Key competencies in sustainability in higher education–Toward an agreed-upon reference framework. Sustainability Science, 16, 13-29. https://doi.org/10.1007/s11625-020-00838-2
  7. Bulut, N., & Borromeo Ferri, R. (2025). Bridging mathematical modelling and education for sustainable development in pre-service primary teacher education. Education Sciences, 15(2), Article 248. https://doi.org/10.3390/educsci15020248
  8. Camacho-Machín, M., Hitt, F., & Hernández, A. (2024). El rol de la modelización matemática y el uso de la tecnología en la formulación de problemas en una perspectiva de integración STEM en la formación de profesores de educación secundaria [The role of mathematical modeling and the use of technology in problem formulation from a STEM integration perspective in secondary school teacher training]. Formación del Profesorado e Investigación en Educación Matemática, XVI, 11-40.
  9. Çibik, N. F., & Boz-Yaman, B. (2025). The effect of a cross-curricular course on pre-service teachers’ sustainable development attitudes and mathematical modeling self-efficacy beliefs. International Journal of Science and Mathematics Education, 23, 1033-1056. https://doi.org/10.1007/s10763-024-10497-9
  10. Cohen-Tannoudji, G. (2002). La notion de modèle en physique théorique [The notion of a model in theoretical physics]. In P. Nouvel (Ed.), Enquête sur le concept de modèle (pp. 29-42). PUF.
  11. English, L.D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM Mathematics Education, 41, 161-181. https://doi.org/10.1007/s11858-008-0106-z
  12. Freudenthal, H. (1991). Revisiting mathematics education. Kluwer.
  13. Garfunkel, S., Niss, M., & Brown, J. (2021). Opportunities for modelling: An extra-curricular challenge. In F. K. S. Leung, G. A. Stillman, G. Kaiser, & K. L. Wong (Eds.), Mathematical modelling education in east and west, international perspectives on the teaching and learning of mathematical modelling (pp. 363-375). Springer. https://doi.org/10.1007/978-3-030-66996-6_30
  14. Hitt, F. (2004). Les représentations sémiotiques dans l’apprentissage de concepts mathématiques et leur rôle dans une démarche heuristique [Semiotic representations in the learning of mathematical concepts and their role in a heuristic approach]. In G. Lemoyne (Ed.), Le langage dans l’enseignement et l’apprentissage des mathématiques: complexité et diversité des cadres d’étude (pp. 329-354). Revue des Sciences de l’Éducation. https://doi.org/10.7202/012672ar
  15. Hitt, F. (2007). Utilisation de calculatrices symboliques dans le cadre d’une méthode d’apprentissage collaboratif, de débat scientifique et d’auto-réflexion [Use of symbolic calculators within a collaborative learning method, scientific debate and self-reflection]. In M. Baron, D. Guin, & L. Trouche (Eds.), Environnements informatisés et ressources numériques pour l’apprentissage. Conception et usages, regards croisés (pp. 65-88). Hermès.
  16. Hitt, F., & Quiroz, S. (2019). Formation et évolution des représentations fonctionnelles-spontanées à travers d’un apprentissage socioculturel [Formation et évolution des représentations fonctionnelles-spontanées à travers d’un apprentissage socioculturel]. Annales de Didactique et de Sciences Cognitives, 24, 75-106. https://doi.org/10.4000/adsc.630
  17. Hitt, F., Quiroz, S., Saboya, M., & Lupiáñez J-L. (2023). Une approche socioculturelle pour la construction d’habiletés de généralisation arithmético-algébriques dans les écoles Québécoises et Mexicaines [A sociocultural approach to building arithmetic-algebraic generalization skills in Quebec and Mexican schools]. Educación Matemática, 35(3), 112-150. https://doi.org/10.24844/EM3503.04
  18. Hui-Chuan, L., & Tsung-Lung, T. (2021). Education for sustainable development in mathematics education: what could it look like? International Journal of Mathematics Education in Science and Technology, 53(9), 2532-2542. https://doi.org/10.1080/0020739X.2021.1941361
  19. Kuckartz, U. (2019). Qualitative text analysis: A systematic approach. In G. Kaiser, & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 181-197). Springer. https://doi.org/10.1007/978-3-030-15636-7_8
  20. Lamanauskas, V., & Malinauskienė, D. (2024). Education for sustainable development in primary school: Understanding, importance, and implementation. European Journal of Science and Mathematics Education, 12(3), 356-373. https://doi.org/10.30935/scimath/14685
  21. Maaß, K. (2006). What are modeling competencies? ZDM Mathematics Education, 38, 113-142. https://doi.org/10.1007/BF02655885
  22. Moreno-Pino F. Jiménez-Fontana R., Cardeñoso J., & Azcárate G. P. (2021). Study of the presence of sustainability competencies in teacher training in mathematics education. Sustainability, 13(10), Article 5629. https://doi.org/10.3390/su13105629
  23. Muñoz-Rodríguez, J. M., Sánchez-Carracedo, F., Barrón-Ruiz, Á., & Serrate-González, S. (2020). Are we training in sustainability in higher education? Case study: Education degrees at the University of Salamanca. Sustainability, 12(11), Article 4421. https://doi.org/10.3390/su12114421
  24. Niss, M. A., & Højgaard, T. (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde Universitet. http://milne.ruc.dk/ImfufaTekster/
  25. Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge. https://doi.org/10.4324/9781315189314
  26. Picavet, E. (2002). Modèles formels et rationalité politique [Formal models and political rationality]. In P. Nouvel (Ed.), Enquête sur le concept de modèle (pp. 161-185). PUF.
  27. Rieckmann, M. (2012). Future-oriented higher education: Which key competencies should be fostered through university teaching and learning? Futures, 44(2), 127-135. https://doi.org/10.1016/j.futures.2011.09.005
  28. Su, C. S., Díaz-Levicoy, D., Vásquez, C., & Hsu, C. C. (2023). Sustainable development education for training and service teachers teaching mathematics: A systematic review. Sustainability, 15(10), Article 8435. https://doi.org/10.3390/su15108435
  29. Suh, H., & Han S. (2019). Promoting sustainability in university classrooms using a stem project with mathematical modeling. Sustainability, 11(11), Article 3080. https://doi.org/10.3390/su11113080
  30. UNESCO. (2017). Education for sustainable development goals: Learning objectives. UNESCO. https://doi.org/10.54675/CGBA9153
  31. Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9-35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc
  32. Vásquez, C., Alsina, Á., Seckel, M. J., & García-Alonso, I. (2023). Integrating sustainability in mathematics education and statistics education: A systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 19(11), Article em2357. https://doi.org/10.29333/ejmste/13809
  33. Vásquez, C., García-Alonso, I., Seckel, M. J., & Alsina, Á. (2021). Education for sustainable development in primary education textbooks–An educational approach from statistical and probabilistic literacy. Sustainability, 13, Article 3115. https://doi.org/10.3390/su13063115
  34. Wiegand, S., & Borromeo Ferri, R. (2023). Promoting pre-service teachers’ professionalism in STEAM education and education for sustainable development through mathematical modelling activities. ZDM Mathematics Education, 55, 1269-1282. https://doi.org/10.1007/s11858-023-01500-8
  35. Wiegand, S., & Borromeo Ferri, R. (2024). Teaching and learning of education for sustainable development through modelling activities with an integrative teaching approach. In H.-S. Siller, G. Kaiser, & V. Geiger (Eds.), Researching mathematical modelling education in disruptive/challenging times (pp. 665-675). Springer. https://doi.org/10.1007/978-3-031-53322-8_55
  36. Wiek, A., Withycombe, L., & Redman, C. L. (2011). Key competencies in sustainability: A reference framework for academic program development. Sustainability Science, 6, 203-218. https://doi.org/10.1007/s11625-011-0132-6