Research Article

What do we really know about students’ written arguments? Evaluating written argumentation skills

Maria Evagorou 1 * , Elena Papanastasiou 1 , Maria Vrikki 1
More Detail
1 Department of Education, School of Education, University of Nicosia, 2417, Nicosia, CYPRUS* Corresponding Author
European Journal of Science and Mathematics Education, 11(4), October 2023, 615-634, https://doi.org/10.30935/scimath/13284
Published Online: 15 May 2023, Published: 01 October 2023
OPEN ACCESS   1945 Views   1125 Downloads
Download Full Text (PDF)

ABSTRACT

The purpose of this study was to explore the different sub-skills of students’ written arguments (i.e., writing an argument, choosing a convincing argument) that might exist, and the content dependency of arguments. This paper presents two written argumentation tools that were designed for 11-14 year-old students, and the main outcomes from applying the tools to evaluate the written arguments of 246 students. The analysis of the data implies that choosing a convincing argument is a different kind of skill than any of the other three aspects of argumentation that were evaluated in these tests; that argumentation is content specific, and that argument construction is easier when the students’ have knowledge of the topic, regardless of whether this is a scientific or an everyday life topic. A main contribution in this study is that we have identified the degree of complexity for all four sub-skills that were included in the test. By identifying that writing an argument is a more difficult skill to acquire, or that students are not acquainted with it, it can help educators to design better scaffolding structures to support students when writing counterarguments. Research implications arising from the findings include exploring in detail how students choose to agree or disagree with given claims in different situations – for example exploring the difference in agreeing with media claims on socioscientific issues as opposed to scientific claims in the science classroom. Implications for teaching include using different teaching approaches for scientific and everyday argumentation.

CITATION (APA)

Evagorou, M., Papanastasiou, E., & Vrikki, M. (2023). What do we really know about students’ written arguments? Evaluating written argumentation skills. European Journal of Science and Mathematics Education, 11(4), 615-634. https://doi.org/10.30935/scimath/13284

REFERENCES

  1. Allchin, D. (2022). Who speaks for science? Science and Education, 31, 1475-1492. https://doi.org/10.1007/s11191-021-00257-4
  2. Allchin, D. (2023). Ten competencies for the science misinformation crisis. Science Education, 107, 261-274. https://doi.org/10.1002/sce.21746
  3. Bell, P., & Linn, M. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817. https://doi.org/10.1080/095006900412284
  4. Bravo-Torija, B., & Jimenez-Aleixandre, M.P. (2018). Developing an initial learning progression for use of evidence in decision-making contexts, International Journal of Science and Mathematics Education, 16, 619-638. https://doi.org/10.1007/s10763-017-9803-9
  5. Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research. Springer. http://doi.org/10.1007/978-1-4020-6670-2_3
  6. Erduran, S. (2022). Argumentation in chemistry education. Research, policy and practice. Royal Society of Chemistry.
  7. Erduran, S., Osborne, J., & Simon, S. (2004). TAPping into argumentation: Developments in the application of Toulmin. Science Education, 88(6), 915-933. https://doi.org/10.1002/sce.20012
  8. Erduran, S., Ozdem, Y., & Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998–2014. International Journal of STEM Education, 2(1), 5. https://doi.org/10.1186/s40594-015-0020-1
  9. Ferretti, R. P., & Graham, S. (2019). Argumentative writing: theory, assessment, and instruction. Reading and Writing, 32, 1345-1357. https://doi.org/10.1007/s11145-019-09950-x
  10. Gleim, L. K., Sampson, V., Hester, M., Williams, K., Sanchez, J., & Button, E. (2010). How middle school and high school students evaluate the claims and arguments found within articles written for the popular press: A comparison study [Paper presentation]. International Conference of the National Association of Research in Science Teaching, Philadelphia, PA.
  11. Jiménez-Aleixandre, M., & Pereiro-Munoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171-1190. https://doi.org/10.1080/09500690210134857
  12. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, A. R. (2000). ‘Doing the lesson’ or ‘Doing science’: Argument in high school genetics. Science Education, 84(6), 757-792. https://doi.org/10.1002/1098-237X(200011)84:6%3C757::AID-SCE5%3E3.0.CO;2-F
  13. Kelly, G., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86, 314-342. https://doi.org/10.1002/sce.10024
  14. Kuhn, D. (1991). The skills of argument. Cambridge. https://doi.org/10.1017/CBO9780511571350
  15. Lawson, A. (2003). The nature and development of hypothetico-predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387-1408. https://doi.org/10.1080/0950069032000052117
  16. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  17. Lee, M., Wu, X., & Tsai, C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999-2020. https://doi.org/10.1080/09500690802314876
  18. Macagno, F. (2016). Argument relevance and structure. Assessing and developing students’ uses of evidence. International Journal of Educational Research, 79, 180-194. https://doi.org/10.1016/j.ijer.2016.07.002
  19. Martín-Gámez, C., & Erduran, S. (2018). Understanding argumentation about socio-scientific issues on energy: A quantitative study with primary pre-service teachers in Spain. Research in Science and Technological Education, 36(4), 463-483. https://doi.org/10.1080/02635143.2018.1427568
  20. Mason, L., & Scirica, F. (2006). Prediction of students' argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16(5), 492-509. https://doi.org/10.1016/j.learninstruc.2006.09.007
  21. McNeill, K. L., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53-78. https://doi.org/10.1002/tea.20201
  22. McNeill, K., & Pimentel, D. (2009). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94, 203-229. https://doi.org/10.1002/sce.20364
  23. Nussbaum, M., & Schraw, G. (2010). Promoting argument-counterargument integration in students' writing. The Journal of Experimental Education, 76(1), 59-92. https://doi.org/10.3200/JEXE.76.1.59-92
  24. Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240. https://doi.org/10.1002/sce.10066
  25. Norris, S. P., Phillips, L. M., & Korpan, C. A. (2003). University students' interpretation of media reports of science and its relationship to background knowledge, interest, and reading difficulty. Public Understanding of Science, 12(2), 123-145. https://doi.org/10.1177/09636625030122001
  26. Osborne, J. F., Henderson, J. B., MacPherson, A., Szu, E., Wild, A., & Yao, S.-Y. (2016). The development and validation of a learning progression for argumentation in science. Journal of Research in Science Teaching, 53(6), 821-846. https://doi.org/10.1002/tea.21316
  27. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  28. Papanastasiou, E. C. (2019). Participant pre-knowledge and attitudes in research. In J. E. Edlund & A. L. Nichols (Eds.), Advanced research methods for the social sciences (pp. 103-128). Cambridge University Press.
  29. Perkins, D. N. (1993). Teaching for understanding. American Educator, 17, 28-35.
  30. Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context bound? Educational Researcher, 18(1), 16-25. https://doi.org/10.3102/0013189X018001016
  31. Rapanta, C., & Christodoulou, A. (2022). Walton's types of argumentation dialogues as classroom discourse sequences. Learning, Culture and Social Interaction, 36, 100352. https://doi.org/10.1016/j.lcsi.2019.100352
  32. Rodríguez-Mora, F., Cebrián-Robles, D., & Blanco-López, A. (2022). As assessment using rubrics and the Rasch Model of 14/15-year-old students’ difficulties in arguing about bottled water consumption. Research in Science Education, 52, 1075-1091. https://doi.org/10.1007/s11165-020-09985-z
  33. Sampson, V., & Clark, D. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. https://doi.org/10.1002/sce.20276
  34. Sampson, V., & Clark, D. (2011). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 1(41), 63-97. https://doi.org/10.1007/s11165-009-9146-9
  35. Sandoval, W. A., & Millwood, K. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
  36. Sandoval, W. A., & Reiser, B. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372. https://doi.org/10.1002/sce.10130
  37. Sharon, A. J., & Baram-Tsabari, A. (2020). Can science literacy help individuals misinformation in everyday life? Science Education, 104, 873-894. https://doi.org/10.1002/sce.21581
  38. Toulmin, S. (1958). The uses of argument. Cambridge University Press.
  39. Van Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. https://doi.org/10.1002/tea.20213
  40. van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., & Krabbe, E. C. W. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments. Mahwah, NJ, Lawrence Erlbaum Associates, Inc.
  41. van Eemeren, F. H., & Grootendorst, R. (2003). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge University Press. https://doi.org/10.1017/CBO9780511616389
  42. Voss, J. F., & Means, M. (1991). Learning to reason via instruction in argumentation. Learning and Instruction, 1(4), 337-350. https://doi.org/10.1016/0959-4752(91)90013-X
  43. Zeidler, D. (1997). The central role of fallacious thinking in science education. Science Education, 81(4), 483-496. https://doi.org/10.1002/(SICI)1098-237X(199707)81:4<483::AID-SCE7>3.0.CO;2-8