Research Article

Mental calculation achievement according to teaching approach: A study with eye-tracking from a neurocognitive approach

Malena Manchado Porras 1 , Inmaculada Menacho Jiménez 1 * , Jose Carlos Piñero-Charlo 1 , María del Carmen Canto-López 1
More Detail
1 Faculty of Science Education, University of Cádiz, Cádiz, SPAIN* Corresponding Author
European Journal of Science and Mathematics Education, 11(4), October 2023, 690-701, https://doi.org/10.30935/scimath/13459
Published Online: 04 July 2023, Published: 01 October 2023
OPEN ACCESS   1113 Views   685 Downloads
Download Full Text (PDF)

ABSTRACT

Currently mathematics difficulties in schools are a major problem due to several factors. Some research suggest that mathematics teaching-learning methodology could be one of the causes. As a result, alternative teaching methods to the traditional approach (ciphers-based closed algorithm [CBC]) have emerged, such as numbers-based open algorithm (ABN) method. Some research about this new approach has emerged, including neuropsychological studies. The current study aims to analyze performance and potential cognitive differences in solving a computerized task linked to eye-tracking device, comparing CBC and ABN approaches. 18 5th & 6th graders participants were evaluated through a computerized mental arithmetic task. Nine participants learned mathematics with CBC, and nine with ABN approach. Participants were distributed according to his/her mathematical performance rate in three sub-groups, three students per sub-group: low, medium, and high. The ABN method group obtained a higher overall score in the computerized task (mean [M]CBC=16.22; MABN=17.11), but the differences were not statistically significant (p=.690). However, significant differences have been found in two eye-tracking measures. ABN method group obtained a lower number of fixations average in areas of interest [AOIs]) (MCBC=5.01; MABN=3.85; p=.001), and a lower pupil diameter average in AOIs (MCBC=4.07; MABN=3.91; p=.001). This occurred regardless of the participants’ mathematical performance. These results suggest that differences between groups were not in task performance, but in cognitive effort spent in solving the task.

CITATION (APA)

Manchado Porras, M., Menacho Jiménez, I., Piñero-Charlo, J. C., & Canto-López, M. D. C. (2023). Mental calculation achievement according to teaching approach: A study with eye-tracking from a neurocognitive approach. European Journal of Science and Mathematics Education, 11(4), 690-701. https://doi.org/10.30935/scimath/13459

REFERENCES

  1. Aguilar, M., Aragón, E., & Navarro, J. I. (2015). Las dificultades de aprendizaje de las matemáticas (DAM). Estado del arte [Mathematics learning difficulties (DAM). State of the art]. Revista de Psicología y Educación [Journal of Psychology and Education], 10(2), 13-42. https://www.revistadepsicologiayeducacion.es/pdf/125.pdf
  2. Al-Azawai, M. (2019). The application of eye-tracking in consumer behavior. International Journal of Engineering and Technology, 8(12), 83-86. https://www.researchgate.net/profile/Mohammad-Al-Azawi/publication/333677546_The_Application_of_Eye-Tracking_in_Consumer_Behaviour/links/5e47c193458515072d9e2384/The-Application-of-Eye-Tracking-in-Consumer-Behaviour.pdf
  3. Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers & Education, 125, 413-428. https://doi.org/10.1016/j.compedu.2018.06.023
  4. Aragón, E., Delgado, C., & Marchena, E. (2017). Diferencias de aprendizaje matemático entre los métodos de enseñanza ABN y CBC [Mathematics learning differences between ABN and CBC teaching methods]. Psychology, Society & Education, 9(1), 61-70. https://doi.org/10.25115/psye.v9i1.462
  5. Araya-Pizarro, S. C., & Espinoza Pastén, L. (2020). Aportes desde las neurociencias para la comprensión de los procesos de aprendizaje en los contextos educativos [Contributions from the neurosciences for the understanding of learning processes in educational contexts]. Propósitos y Representaciones [Purposes and Representations], 8(1), e312. https://doi.org/10.20511/pyr2020.v8n1.312
  6. Behe, B. K., Bae, M., Huddleston, P. T., & Sage, L. (2015). The effect of involvement on visual attention and product choice. Journal of Retailing and Consumer Services, 24, 10-21. https://doi.org/10.1016/j.jretconser.2015.01.002
  7. Canto López, M.D.C (2017). Método de aprendizaje matemático Abierto Basado en Números (ABN) como alternativa al método Cerrado Basado en Cifras (CBC) [Mathematical learning method Open Based on Numbers (ABN) as an alternative to the Closed Based on Numbers (CBC) method] [Unpublished doctoral dissertation, Universidad de Cádiz].
  8. Canto, M. D. C., Manchado, M., Piñero, J. C., Mera, C., Delgado, C., Aragón, E., & García, M. A. (2022). Description of main innovative and alternative methodologies for mathematical learning of written algorithms in primary education. Frontiers in Psychology, 13, 1-14. https://doi.org/10.3389/fpsyg.2022.913536
  9. Carter, B. T., & Luke, S. G. (2020). Best practices in eye tracking research. International Journal of Psychophysiology, 155, 49-62. https://doi.org/10.1016/j.ijpsycho.2020.05.010
  10. Carvajal, J. C., Gómez, E. L., & Barreto, I. (2021). Comportamiento visual y engaño: Una revisión sistematizada [Visual behavior and deception: A systematized review]. Anuario de Psicología [The UB Journal of Psychology], 51(2). 120-129. https://doi.org/10.1344/ANPSIC2021.51/2.30221
  11. Cerda, G., Aragón, E., Pérez, C., Navarro, J. I., & Aguilar, M. (2018). The open algorithm based on numbers (ABN) method: An effective instructional approach to domain-specific precursors of arithmetic development. Frontiers in Psychology, 9, 1811. https://doi.org/10.3389/fpsyg.2018.01811
  12. Chinn, S. (2014). The Routledge international handbook of dyscalculia and mathematical learning difficulties. Routledge. https://doi.org/10.4324/9781315740713
  13. Choi, J. H. (2017). Investigation of human eye pupil sizes as a measure of visual sensation in the workplace environment with a high lighting color temperature. Indoor and Built Environment, 26(4), 488-501. https://doi.org/10.1177/1420326X15626585
  14. De La Peña, C., & Bernabéu, E. (2018). Dyslexia and dyscalculia: A current systematic revision from a neurogenetics perspective. Universitas Psychologica [Psychology University], 17(3), 1-11. https://doi.org/10.11144/Javeriana.upsy17-3.ddrs
  15. Dehaene, S. (2019). El cerebro matemático: Como nacen, viven y a veces mueren los números en nuestra mente [The mathematical brain: How numbers are born, live and sometimes die in our minds]. Siglo XXI Editora Iberoamericana [XXI Century Ibero-American Publishing House].
  16. Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2015). Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they? Instructional Science, 43(1), 147-171. https://doi.org/10.1007/s11251-014-9332-7
  17. Díaz-López, M.D.P, Torres, N.D.M., & Lozano, M. C. (2017). Nuevo enfoque en la enseñanza de las matemáticas, el método ABN [New approach in teaching mathematics, the ABN method]. International Journal of Developmental and Educational Psychology, 3(1), 431-434. https://doi.org/10.17060/ijodaep.2017.n1.v3.1012
  18. Freudenthal, H. (1968). Why to teach mathematics so as to be useful. Educational Studies in Mathematics, 1, 3-8. https://doi.org/10.1007/BF00426224
  19. Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition. Routledge. https://doi.org/10.4324/9781315684758
  20. Hernández-Sabate, A., Albarracin, L., Calvo, D., & Gorgorio, N. (2016). EyeMath: Identifying mathematics problem solving processes in a RTS video game. In R. Bottino, J. Jeuring, & R. C. Veltkamp (Eds.), Games and learning alliance (pp. 50-59). Springer. https://doi.org/10.1007/978-3-319-50182-6_5
  21. Hessels, R. S., & Hooge, I. T. (2019). Eye tracking in developmental cognitive neuroscience–The good, the bad and the ugly. Developmental Cognitive Neuroscience, 40, 100710. https://doi.org/10.1016/j.dcn.2019.100710
  22. Hessels, R. S., Kemner, C., van den Boomen, C., & Hooge, I. T. (2016). The area-of-interest problem in eye-tracking research: A noise-robust solution for face and sparse stimuli. Behavior Research Methods, 48, 1694-1712. https://doi.org/10.3758/s13428-015-0676-y
  23. Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45(1), 62-101. https://doi.org/10.5951/jresematheduc.45.1.0062
  24. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford University Press.
  25. Hurst, M., & Cordes, S. (2016). Rational-number comparison across notation: Fractions, decimals, and whole numbers. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 281-293. https://doi.org/10.1037/xhp0000140
  26. Jaime, A., & Gutiérrez, Á. (2021). La alta capacidad matemática: Caracterización, identificación y desarrollo [High mathematical ability: Characterization, identification and development]. La Gaceta de la RSME [The RSME Gazette], 24(3), 597-621. https://gaceta.rsme.es/abrir.php?id=1663
  27. Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8(4), 441-480. https://doi.org/10.1016/0010-0285(76)90015-3
  28. Klein, E., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Operational momentum affects eye fixation behavior. Quarterly Journal of Experimental Psychology, 67(8), 1614-1625. https://doi.org/10.1080/17470218.2014.902976
  29. Klein, P., Viiri, J., Mozaffari, S., Dengel, A., & Kuhn, J. (2018). Instruction-based clinical eye-tracking study on the visual interpretation of divergence: How do students look at vector field plots? Physical Review Physics Education Research, 14, 010116. https://doi.org/10.1103/PhysRevPhysEducRes.14.010116
  30. Kulke, L. V., Atkinson, J., & Braddick, O. (2016). Neural differences between covert and overt attention studied using EEG with simultaneous remote eye tracking. Frontiers in Human Neuroscience, 10, 592. https://doi.org/10.3389/fnhum.2016.00592
  31. Lafay, A., St-Pierre, M.-C., & Macoir, J. (2019). Impairment of non-symbolic number processing in children with mathematical learning disability. Journal of Numerical Cognition, 5(1), 86-104. https://doi.org/10.5964/jnc.v5i1.177
  32. Lahey, J. N., & Oxley, D. (2016). The power of eye tracking in economics experiments. American Economic Review, 106(5), 309-313. https://doi.org/10.1257/aer.p20161009
  33. Loos-Sant’Ana, H., & Brito, M. R. F. D. (2017). Attitude and achievement in mathematics, self-beliefs and family: A path-analysis. Bolema: Boletim de Educação Matemática [Bulletin: Mathematics Education Bulletin], 31, 590-613. https://doi.org/10.1590/1980-4415v31n58a03
  34. Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 2018(11), 311-322. https://doi.org/10.2147/PRBM.S141421
  35. Martínez, M., & Valiente, C. (2020). Actividades extraescolares y rendimiento académico: Diferencias según el género y tipo de centro [Extracurricular activities and academic performance: Differences according to gender and type of center]. MLS Educational Research, 4(1), 73-89. https://doi.org/10.29314/mlser.v4i1.286
  36. Martínez-Montero, J. (2018). El cálculo ABN. Un enfoque diferente para el aprendizaje del cálculo y las matemáticas [The ABN calculation. A different approach to learning calculus and mathematics]. Padres y Maestros [Journal of Parents and Teachers], 376, 52-59. https://doi.org/10.14422/pym.i376.y2018.008
  37. Martínez-Montero, J., & Sánchez-Cortés, C. (2021). ¿Por qué los escolares fracasan en matemáticas? [Why do schoolchildren fail in math?] Wolters Kluwer.
  38. Mato-Vázquez, D., Espiñeira, E., & López-Chao, V. A. (2017). Impacto del uso de estrategias metacognitivas en la enseñanza de las matemáticas [Impact of the use of metacognitive strategies in the teaching of mathematics]. Perfiles Educativos [Educational Profiles], 39(158), 91-111. https://doi.org/10.22201/iisue.24486167e.2017.158.58759
  39. Mello, J. D., & Hernández, A. (2019). Un estudio sobre el rendimiento académico en matemáticas [A study on academic performance in mathematics]. Revista Electrónica de Investigación Educativa [Electronic Journal of Educational Research], 21(29), 1-10. https://doi.org/10.24320/redie.2019.21.e29.2090
  40. Michal, A. L., Uttal, D., Shah, P., & Franconeri, S. L. (2016). Visual routines for extracting magnitude relations. Psychonomic Bulletin and Review, 23(6), 1802-1809. https://doi.org/10.3758/s13423-016-1047-0
  41. Moreira, M. A. (2017). Aprendizaje significativo como un referente para la organización de la enseñanza [Significant learning as a reference for the organization of teaching]. Archivos de Ciencias de la Educación [Archives of Educational Sciences], 11(12), e029. https://doi.org/10.24215/23468866e029
  42. Muldner, K., & Burleson, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127-137. https://doi.org/10.1016/j.chb.2013.10.060
  43. Noel, M.-P., & Gregoire, J. (2015). TEDI-MATH GRANDS–Test diagnostique des compétences de base en mathématiques pour les enfants du CE2 à la 5ème [TEDI-MATH GRANDS–Diagnostic test of basic math skills for children from CE2 to 5th grade]. Pearson.
  44. Passolunghi, M. C., & Costa, H. M. (2016). Working memory and early numeracy training in preschool children. Child Neuropsychology, 22(1), 81-98. https://doi.org/10.1080/09297049.2014.971726
  45. Pérez, C., González, I., Cerda, G., & Benvenuto, G. (2018). The ABN method as an effective articulator of mathematical learning in childhood: experiences in professors of initial cycle in Chile. Journal of Educational Cultural and Psychological Studies, 17, 75-96. https://doi.org/10.7358/ecps-2018-017-pere
  46. Piñero-Charlo, J. C., Noriega Bustelo, R., Canto López, M. C., & Costado Dios, M. T. (2022). Influence of the algorithmization process on the mathematical competence: A case study of trainee teachers assessing ABN- and CBC-instructed schoolchildren by gamification. Mathematics, 10, 3021. https://doi.org/10.3390/math10163021
  47. Rivera-Rivera, E. (2019). El neuroaprendizaje en la enseñanza de las matemáticas: La nueva propuesta educativa [Neuro-learning in the teaching of mathematics: The new educational proposal]. Entorno [Around], 67, 157-168. https://doi.org/10.5377/entorno.v0i67.7498
  48. Schindler, M., & Lilienthal, A. (2018). Eye-tracking for studying mathematical difficulties: Also in inclusive settings. In Proceedings of Annual Meeting of the International Group for the Psychology of Mathematics Education (pp. 115-122).
  49. Schroeder, S., Hyönä, J., & Liversedge, S. P. (2015). Developmental eye-tracking research in reading: Introduction to the special issue. Journal of Cognitive Psychology, 27(5), 500-510. https://doi.org/10.1080/20445911.2015.1046877
  50. Sillero-Rejón, C., Maynard, O., & Ibáñez-Zapata, J. A. (2019). Atención visual hacia el etiquetado de bebidas alcohólicas: Un estudio exploratorio basado en eye-tracking [Visual attention towards the labeling of alcoholic beverages: An exploratory study based on eye-tracking]. Adicciones [Addictions], 32(3), 202-207. https://doi.org/10.20882/adicciones.1207
  51. Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye-tracking methodology in mathematics education research: A systematic literature review. Educational Studies in Mathematics, 104, 147-200. https://doi.org/10.1007/s10649-020-09948-1
  52. Szczygieł, M., & Pieronkiewicz, B. (2022). Exploring the nature of math anxiety in young children: Intensity, prevalence, reasons. Mathematical Thinking and Learning, 24(3), 248-266. https://doi.org/10.1080/10986065.2021.1882363
  53. Van der Laan, L. N., Papies, E. K., Hooge, I. T., & Smeets, P. A. (2017). Goal-directed visual attention drives health goal priming: An eye-tracking experiment. Health Psychology, 36(1), 82. https://doi.org/10.1037/hea0000410
  54. Vargas, M. M. (2016). Factores que determinan el rendimiento académico en matemáticas en el contexto de una universidad tecnológica: Aplicación de un modelo de ecuaciones estructurales [Factors that determine academic performance in mathematics in the context of a technological university: Application of a structural equation model]. Universitas Psychologica [Psychology University], 15(4), 1-11. https://doi.org/10.11144/Javeriana.upsy15-4.fdra
  55. Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118-132. https://doi.org/10.1016/j.lindif.2014.11.017
  56. Zolkower, B., Bressan, A. M., Pérez, S., & Gallego, M. F. (2020). From the bottom up–Reinventing realistic mathematics education in Southern Argentina. In M. van den Heuvel-Panhuizen (Ed.), International reflections on the Netherlands didactics of mathematics (pp. 133-166). Springer. https://doi.org/10.1007/978-3-030-20223-1