Research Article

Design and validation of the P-MATHEX questionnaire: Assessing preservice teachers’ perceptions of pedagogical knowledge in mathematics and science

María Santágueda-Villanueva 1 , Maria Teresa Sanz 2 * , Emilia López-Iñesta 2 , Lidón Monferrer 1 , Gil Lorenzo-Valentín 1
More Detail
1 Departamento de Educación y Didácticas Especificas, Universitat Jaume I, Castellón de la Plana, SPAIN2 Departamento Didáctica de la Matemática, Universidad de Valencia, Valencia, SPAIN* Corresponding Author
European Journal of Science and Mathematics Education, 14(1), January 2026, 1-27, https://doi.org/10.30935/scimath/17522
Published: 09 December 2025
OPEN ACCESS   59 Views   30 Downloads
Download Full Text (PDF)

ABSTRACT

This study presents the design and validation of the P-MATHEX questionnaire, an instrument aimed at assessing preservice primary teachers’ perceptions regarding pedagogical knowledge in mathematics and experimental science education. Initially, a questionnaire comprising 50 Likert-scale items and 10 demographic questions was developed and subjected to a cognitive pre-test with 50 preservice teachers from a Spanish university. The instrument was then validated using a larger training sample of 264 participants. Psychometric validation involved exploratory factor analysis (EFA) and confirmatory factor analysis, item discrimination indices, and internal consistency reliability assessed by McDonald’s omega coefficient. EFA results identified five distinct factors: teacher training improvement, methodological shortcomings, applied teaching methods, trial-and-error approach, and student problem-solving difficulties. The revised questionnaire was further validated with an additional sample of 166 preservice teachers. Results confirmed excellent internal consistency (global ω = 0.95) and robust factorial structure (CFI = 0.986; TLI = 0.985; RMSEA = 0.061). The P-MATHEX questionnaire effectively highlighted preservice teachers’ perceived strengths in practical teaching methods and identified areas requiring further training, particularly inclusive education practices and integration of information and communication technologies skills. This validated instrument provides educators and policymakers a reliable and actionable tool to evaluate and enhance teacher education programmes in mathematics and experimental sciences, ultimately aiming to improve pedagogical practices in primary education classrooms.

CITATION (APA)

Santágueda-Villanueva, M., Sanz, M. T., López-Iñesta, E., Monferrer, L., & Lorenzo-Valentín, G. (2026). Design and validation of the P-MATHEX questionnaire: Assessing preservice teachers’ perceptions of pedagogical knowledge in mathematics and science. European Journal of Science and Mathematics Education, 14(1), 1-27. https://doi.org/10.30935/scimath/17522

REFERENCES

  1. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198. https://doi.org/10.1016/j.learninstruc.2006.03.001
  2. American Educational Research Association. (2014). Standards for educational and psychological testing. American Educational Research Association. https://www.testingstandards.net/open-access-files.html
  3. Angel-Cuervo, Z.-M., Briceño-Martínez, J.-J., & Bernal-Ballén, A. (2024). Validation of a questionnaire to evaluate mathematics teachers’ beliefs about mathematics, teaching, and learning. Eurasia Journal of Mathematics, Science and Technology Education, 20(5), Article em2435. https://doi.org/10.29333/ejmste/14447
  4. Björck, V., & Johansson, K. (2019). Problematising the theory–Practice terminology: A discourse analysis of students’ statements on work-integrated learning. Journal of Further and Higher Education, 43(10), 1363-1375. https://doi.org/10.1080/0309877X.2018.1483016
  5. Bretones, A. (2013). El prácticum de magisterio en educación primaria: Una mirada retrospective [The teaching practicum in primary education: A retrospective look]. Revista Complutense de Educación, 24(2), 443-471. https://doi.org/10.5209/rev_RCED.2013.v24.n2.42088
  6. Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). The Guilford Press.
  7. Cho, E. (2016). Making reliability reliable: A systematic approach to reliability coefficients. Organizational Research Methods, 19(4), 651-682. https://doi.org/10.1177/1094428116656239
  8. Codes, M., Climent, & N., Oliveros, I. (2019). Prospective primary teachers’ knowledge about the mathematical practice of defining. In U. T. Jankvist, M. Van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the 11th Congress of the European Society for Research in Mathematics Education (pp. 3871-3878). ERME.
  9. Colén, M. T., & Castro, L. (2017). El desarrollo de la relación teoría y práctica en el grado de maestro en educación primaria [The development of the relationship between theory and practice in the primary education teacher degree]. Profesorado. Revista de Currículum y Formación del Profesorado, 21(1), 59-79. https://doi.org/10.30827/profesorado.v21i1.10352
  10. Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12-25. https://doi.org/10.1016/j.tate.2013.03.001
  11. Di Martino, P., & Zan, R. (2010). ‘Me and maths’: Towards a definition of attitude grounded on students’ narratives. Journal of Mathematics Teacher Education, 13(1), 27-48. https://doi.org/10.1007/s10857-009-9134-z
  12. Díez-Fernández, Á., & Domínguez-Fernández, R. (2018). University tutors as facilitators of student-teachers’ reflective learning during their teaching practice. Estudios Pedagógicos, 44(2), 311-328. https://doi.org/10.4067/S0718-07052018000200311
  13. Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12. https://doi.org/10.3102/0013189X023007005
  14. Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399-412. https://doi.org/10.1111/bjop.12046
  15. Ebel, R. L., & Frisbie, D. A. (1991). Essentials of educational measurement (5th ed.). Prentice Hall.
  16. European Commission. (2018). Key competences for lifelong learning. European Commission. https://op.europa.eu/en/publication-detail/-/publication/297a33c8-a1f3-11e9-9d01-01aa75ed71a1/language-en
  17. European Commission/EACEA/Eurydice. (2021). Teachers in Europe: Careers, development and well-being. Eurydice. https://eurydice.eacea.ec.europa.eu/sites/default/files/teachers_in_europe_2020_chapter_1.pdf
  18. European Ministers of Education. (1999). The Bologna declaration of 19 June 1999: Joint declaration of the European Ministers of Education. EHEA. https://ehea.info/Upload/document/ministerial_declarations/1999_Bologna_Declaration_English_553028.pdf
  19. Fierro, B. T., & Majós, T. M. (2016). Aprendizaje como participación durante el prácticum en un aula de educación infantil [Learning as participation during the practicum in an early childhood education classroom]. Estudios Pedagógicos, 42(2), 343-363. https://doi.org/10.4067/S0718-07052016000200020
  20. Fives, H., & Buehl, M. M. (2012). Spring cleaning for the “messy” construct of teachers’ beliefs: What are they? Which have been examined? What can they tell us? In K. R. Harris, S. Graham, T. Urdan, S. Graham, J. M. Royer, & M. Zeidner (Eds.), APA educational psychology handbook: Vol. 2. Individual differences and cultural and contextual factors (pp. 471-499). American Psychological Association. https://doi.org/10.1037/13274-019
  21. Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling: A Multidisciplinary Journal, 6, 16(4), 625-641. https://doi.org/10.1080/10705510903203573
  22. Franco, J., & Alsina, Ángel. (2022). El conocimiento del profesorado de Educación Primaria para enseñar estadística y probabilidad: Una revisión sistemática [Primary school teachers’ knowledge of statistics and probability: A systematic review]. Aula Abierta, 51(1), 7-16. https://doi.org/10.17811/rifie.51.1.2022.7-16
  23. Gairín-Sallán, J., Díaz-Vicario, A., Del Arco Bravo, I., & Alarcia, O. F. (2019). Effect and impact of curricular practices of the early childhood education and primary education bachelor’s degrees: Opinion of students, tutors and coordinators. Educación XX1, 22(2), 17-43. https://doi.org/10.5944/educxx1.21311
  24. García, A., Buforn, A., & Torregrosa, G. (2014). Un módulo de enseñanza centrado en desarrollar el razonamiento configural: Características desde una perspectiva cognitiva. In M. T Tortosa, J. D. Álvarez, & N. Pellín (Eds.), Proceedings of the 12th Conference on Research Networks in University Teaching. Universidad de Alicante.
  25. Gil, J., & Martí, J. (Eds.) (2024). Las prácticas curriculares en alternancia: propuestas para el ámbito universitario. Graó.
  26. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM Mathematics Education, 39, 127-135. https://doi.org/10.1007/s11858-006-0004-1
  27. González, E., Muñoz, M., Cruz, A., & Olivares, M. A. (2019). Construction of the teaching professional identity in early childhood education in Córdoba (Spain). Revista de Ciencias Sociales, 25(3), 30-41. https://doi.org/10.31876/rcs.v25i3.27354
  28. González, F., Bisquert, M., Haba-Osca, J., & Osca-Lluch, J. (2020). Secondary teacher training in Spain: A study through the official masters in secondary education in public universities. Revista Interuniversitaria de Formación del Profesorado, 34(2), 205-224. https://doi.org/10.47553/rifop.v34i2.78055
  29. Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203781098
  30. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate data analysis (8th ed.). Cengage Learning.
  31. Henríquez-Rivas, C., & Vergara-Gómez, A. (2025). Design and validation of a questionnaire to explore the geometric work of mathematics teachers. European Journal of Science and Mathematics Education, 13(2), 103-118. https://doi.org/10.30935/scimath/16161
  32. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406. https://doi.org/10.3102/00028312042002371
  33. Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185. https://doi.org/10.1007/BF02289447
  34. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  35. Jacobs, V. R., Lamb, L. C., & Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202. https://doi.org/10.5951/jresematheduc.41.2.0169
  36. Kalyuga, S. (2014). The expertise reversal principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 576-597). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.028
  37. Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30(1), 17-24. https://doi.org/10.1037/h0057123
  38. Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. National Academy Press.
  39. Kim, B.-H., & Kim, J. (2016). Development and validation of evaluation indicators for teaching competency in STEAM education in Korea. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1909-1924. https://doi.org/10.12973/eurasia.2016.1537a
  40. Kind, V., & Kind, P. (2007). Creativity in science education: Perspectives and challenges for developing school science. Studies in Science Education, 43(1), 1-37. https://doi.org/10.1080/03057260708560225
  41. Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Krauss, S., & Baumert, J. (2013). Teachers’ content knowledge and pedagogical content knowledge: The role of structural differences in teacher education. Journal of Teacher Education, 64(1), 90-106. https://doi.org/10.1177/0022487112460398
  42. Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
  43. Larrañaga, A. E. (2012). Problemática de los alumnos de magisterio durante el prácticum: Estudio en la facultad de educación y humanidades de Melilla [Problems faced by student teachers during the practicum: A study at the faculty of education and humanities of Melilla]. Publicaciones de la Facultad de Educación y Humanidades del Campus de Melilla, 42, 107-120.
  44. León-Urquijo, A. P., García-Jiménez, O. L., & Rendón-Lara, D. B. (2018). Investigaciones sobre prácticas pedagógicas de maestros en formación de instituciones de educación superior. Espacios, 39(53).
  45. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149. https://doi.org/10.1037/1082-989X.1.2.130
  46. Martínez-Izaguirre, M., Barrenetxea, L., & Díaz-Iso, A. (2019). Aprendizaje entre iguales y desarrollo profesional de los estudiantes en prácticas del grado de educación primaria a través de los foros online [Peer learning and professional development of students in primary education degree placements through online forums]. Aloma, 37(1), 45-53. https://doi.org/10.51698/aloma.2019.37.1.45-53
  47. Mason, J. (2016). Perception, interpretation and decision making: Understanding gaps between competence and performance–A commentary. ZDM Mathematics Education, 48, 219-226. https://doi.org/10.1007/s11858-016-0764-1
  48. Méndez, V. G., & Magaña, E. C. (2019). Los tutores de prácticas en los centros: Comparativa autonómica del prácticum del máster de educación secundaria [Practice supervisors in schools: A regional comparison of the practicum for the master’s degree in secondary education]. Revista Española de Educación Comparada, 34(1), 163-181. https://doi.org/10.5944/reec.34.2019.23524
  49. Mendoza, M., Drouilly, N., & Covarrubias, C. G. (2020). Dimensiones formativas del prácticum de pedagogía en educación general básica [Formative dimensions of the practicum in basic general education]. Estudios Pedagógicos, 46(2), 139-157. https://doi.org/10.4067/S0718-07052020000200139
  50. Messick, S. (1995). Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741-749. https://doi.org/10.1037/0003-066X.50.9.741
  51. Montes Navarro, M. Ángel, Climent, N., & Contreras, L. C. (2022). Construyendo conocimiento especializado en geometría: Un experimento de enseñanza en formación inicial de maestros [Building specialized knowledge in geometry: A teaching experiment in initial teacher training]. Aula Abierta, 51(1), 27-36. https://doi.org/10.17811/rifie.51.1.2022.27-36
  52. Nortes-Martínez-Artero, R., & Nortes-Checa, A. (2018). Conocimientos matemáticos de futuros maestros en resolución de problemas de 6.º de primaria [Mathematical knowledge of future teachers in problem solving for 6th grade of primary school]. Educatio Siglo XXI, 36(3), 201-230. https://doi.org/10.6018/j/349971
  53. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). McGraw-Hill.
  54. Onrubia, J., Mauri, T., Colomina, R., & Ginesta, A. (2020). Promover la colaboración entre maestros tutores/as y tutores/as de universidad en “espacios compartidos” de evaluación formativa en el prácticum de maestro de educación primaria. In C. Lindín, M. B. Esteban, J. C. Bergmann, N. Castells, & P. Rivera-Vargas (Eds.), Proceedings of the 1st International Conference on Research in Education. Education 2019: Challenges, Trends and Commitments (pp. 192-198). Institut de Recerca en Educació, Universitat de Barcelona.
  55. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. The Nuffield Foundation. https://www.nuffieldfoundation.org/about/publications/science-education-in-europe-critical-reflections
  56. Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257-315). Information Age Publishing.
  57. Poveda, B., Barceló, M. L., Rodríguez, I., & López-Gómez, E. (2021). Perceptions and beliefs of education students about learning at university and during the practicum: A qualitative study. Revista Complutense de Educación, 32(1), 41-53. https://doi.org/10.5209/rced.67953
  58. Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544-559. https://doi.org/10.1080/00223891.2010.496477
  59. Rosenberg, M. J., & Hovland, C. I. (1960). Cognitive, affective, and behavioral components of attitudes. In M. J. Rosenberg, & C. I. Hovland (Eds.), Attitude organization and change: An analysis of consistency among attitude components (pp. 1-14). Yale University Press.
  60. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika, 34(S1), 1-97. https://doi.org/10.1007/BF03372160
  61. Sanmamed, M. G., & Abeledo, E. J. F. (2011). Practicum in the learning of teaching professionals. Revista de Educación, 354(3), 47-70.
  62. Santágueda-Villanueva, M., & Lorenzo-Valentín, G. (2024). Autosuficiencia matemática en docentes en formación inicial y en ejercicio: Estudio de caso [Mathematical self-sufficiency in pre-service and in-service teachers: A case study.]. Encuentros. Revista De Ciencias Humanas, Teoría Social Y Pensamiento Crítico, (20 (enero-abril)), 193–205. https://encuentros.unermb.web.ve/index.php/encuentros/article/view/647
  63. Schoenfeld, A. H. (2017). Learning to think mathematically: Problem-solving, metacognition, and sense making in mathematics. Journal of Education, 196(2), 1-38. https://doi.org/10.1177/002205741619600202
  64. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
  65. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  66. Spanish Society for Research in Mathematics Education. (2014). Editorial. Boletín de la SEIEM, 37, 2 [Editorial. SEIEM bulletin, 37, 2]. Spanish Society for Research in Mathematics Education. https://www.seiem.es/wp-content/uploads/2025/04/boletin37.pdf
  67. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Allyn & Bacon.
  68. Trumbull, D. J., & Fluet, K. (2008). What can be learned from writing about early field experiences? Teaching and Teacher Education, 24(6), 1672-1685. https://doi.org/10.1016/j.tate.2007.12.001
  69. Ulusoy, F. (2021). Prospective early childhood and elementary school mathematics teachers’ concept images and concept definitions of triangles. International Journal of Science and Mathematics Education, 19, 1057-1078. https://doi.org/10.1007/s10763-020-10105-6
  70. Vargas, S. D., Bernal-Ballén, A., Briceño-Martínez, J. J., & Ariza-Bareño, Y. (2024). Design and validation of an instrument to determine the relationship between pedagogical content knowledge and practical work in science instruction. Eurasia Journal of Mathematics, Science and Technology Education, 20(1), Article em2382. https://doi.org/10.29333/ejmste/13962
  71. Verger-Gelabert, S., Riera-Negre, L., Rosselló-Ramón, M. R., & Mut-Amengual, B. (2023). Análisis del prácticum de educación infantil y primaria en las universidades Españolas [Analysis of the practicum in early childhood and primary education in Spanish universities]. Aula Abierta, 52(1), 81-90. https://doi.org/10.17811/rifie.52.1.2023.81-90
  72. Wilkie, K. J. (2016). Learning to teach upper primary school algebra: Changes to teachers’ mathematical knowledge for teaching functional thinking. Mathematics Education Research Journal, 28(2), 245-275. https://doi.org/10.1007/s13394-015-0151-1