Research Article

Introduction to Newtonian mechanics via two-dimensional dynamics - The effects of a newly developed content structure on German middle school students

Verena Spatz 1 * , Martin Hopf 2, Thomas Wilhelm 3, Christine Waltner 4, Hartmut Wiesner 5
More Detail
1 Didaktik der Physik, Fachbereich Physik, Technische Universität Darmstadt,  Darmstadt, Germany2 Austrian Education Competence Centre Physics, Universität Wien, Vienna, Austria3 Institut für Didaktik der Physik, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany4 Lise-Meitner-Gymnasium, Unterhaching,  Germany5 Didaktik der Physik, Fachbereich Physik, Ludwig-Maximilians-Universität München, Munich, Germany* Corresponding Author
European Journal of Science and Mathematics Education, 8(2), April 2020, 76-91, https://doi.org/10.30935/scimath/9548
OPEN ACCESS   1888 Views   1533 Downloads
Download Full Text (PDF)

ABSTRACT

Newtonian mechanics is still among the most difficult topics in the physics’ syllabus taught at school. For example, even after completing traditional instruction, students still think that a force is necessary to maintain motion. Therefore, a revised method of instruction is needed that meets students’ learning needs.
The aim of the project presented in this article was to develop and evaluate novel teaching units for the introduction to Newtonian mechanics. Rather than changing methodology, the content area itself was restructured innovatively with careful consideration of the most common preconceptions. Based on diSessa’s notion of conceptual change as the reorganisation of these only loosely connected preconceptions, so-called p-prims (diSessa, 1993, 2008), the strategy pursued was aimed at triggering the activation of appropriate p-prims while avoiding the activation of inappropriate p-prims. For example, to lower the activation priority of the above mentioned notion, a consistent introduction to mechanics via two-dimensional dynamics was chosen.
In the first year of the corresponding study, 10 participating teachers taught their 7th-grade classes in the traditional one-dimensional way. In the following year, the same teachers taught (other) 7th-grade classes using the revised two-dimensional way. Students’ knowledge of mechanics, self-concept and interest in physics were assessed. This quasi-experimental field study showed a significant improvement in students’ conceptual understanding. Thus the findings of this project suggest that altering the content structure of a particular topic might be an important parameter to improving learning outcomes.

CITATION (APA)

Spatz, V., Hopf, M., Wilhelm, T., Waltner, C., & Wiesner, H. (2020). Introduction to Newtonian mechanics via two-dimensional dynamics - The effects of a newly developed content structure on German middle school students. European Journal of Science and Mathematics Education, 8(2), 76-91. https://doi.org/10.30935/scimath/9548

REFERENCES

  1. Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.
  2. Burkhardt, H., & Schoenfeld, A. H. (2003). Improving educational research: Toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32 (9), 3-14.
  3. Champagne, A. G., Klopfer, L. E., & Anderson, J. H. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48, 1074-1079.
  4. Champagne, A. B., Klopfer, L. E., Solomon, C. A., & Cahn, A. D. (1980). Interactions of students’ knowledge with their comprehension and design of science experiments. Pittsburgh: Learning research and development center.
  5. Chi, M. (2008). Three types of Conceptual Change: Belief Revision, Mental Model Transformation and Categorical Shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61-82). New York and London: Routledge.
  6. The Design-Based Research Collective (2003). Design-Based Research: An emerging paradigm for educational inquiry. Educational Researcher, 32 (1), 5-8.
  7. diSessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105-225.
  8. diSessa, A. (2008). A bird’s eye view of the “Pieces” vs. “Coherence” controversy, from the “Pieces” side of the fence. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35-60). New York and London: Routledge.
  9. diSessa A. (2018). A friendly introduction to “Knowledge in Pieces”: Modeling types of knowledge and their roles in learning. In: G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education. Cham: Springer.
  10. Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics - Education Research, 10 (2).
  11. Duit, R. (2009). Students’ and teachers’ conceptions and science education. Kiel: IPN.
  12. Duit, R., & Treagust, D.F. (2012). Conceptual Change: Still a powerfull framework for improving science teaching and learning. In K.C.T. Tan, & M. Kim (Eds.), Issues and challenges in science education research (pp. 43-54). Heidelberg: Springer.
  13. Driver, R., & Easley, J (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
  14. Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science. Research into children’s science. New York and London: Routledge.
  15. Eisenbud, L. (1958). On the classical laws of motion. American Journal of Physics, 26, 144-159.
  16. Gunstone, R. F., & White, R. T. (1981). Understanding of gravity. Science Education, 65, 291-299.
  17. Hake, R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66 (1), 64-74.
  18. Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Phys. (Physics, Education, Research, Suppl.) 68 (7), 52-59.
  19. Hartmann, S. (2004). Erklärungsvielfalt [Variety of explanations]. Berlin: Logos.
  20. Hast, M., & Howe, C. (2013). Towards a complete commonsense theory of motion: The interaction of dimensions in children’s predictions of natural object motion. International Journal of Science Education, 35:10, 1649-1662.
  21. Heller, K.A., & Perleth, C. (2000). Kognitiver Fähigkeits-Test für 4. bis 12. Klassen [Test of cognitive abilities for grades 4 to 12]. Göttingen: Beltz.
  22. Helmke, A (1992). Determinanten der Schulleistung: Forschungsstand und Forschungsdefizit [Determinants of school performance: Research status and research deficit]. In: G. Nold (Ed.), Lernbedingungen und Lernstrategien [Learning conditions and learning strategies] (pp. 23-34). Thübigen: Gunter Narr Verlag.
  23. Hestenes, D., Wells, M., & Swackhamer, G. (1992a). Force Concept Inventory. The Physics Teacher, 30, 141-158.
  24. Hestenes, D., & Wells, M. (1992b). A mechanics baseline test. The Physics Teacher, 30, 159-166.
  25. Hopf, M., Wilhelm, T., Walther, C., Tobias, V., & Wiesner, H. (2011). Einführung in die Mechanik [Introduction to mechanics]. Retrieved from www.thomas-wilhelm.net/Mechanikbuch_Druckversion.pdf.
  26. Itza-Ortiz, S. F., Rebello, N. S., Zollman, D. A. & Rodriguez-Achach, M. (2002). The Vocabulary of Introductory Physics and Its Implications for Learning Physics. The Physics Teacher. 41 (9), 330-336.
  27. Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm? Educational Technology Research and Development, 39 (3), 5-14.
  28. Jung, W (1980). Mechanik für die Sekundarstufe I [Mechanics for secondary schools]. Frankfurt am Main: Diesterweg.
  29. Jung, W. (1986). Alltagsvorstellungen und das Lernen von Physik und Chemie [Students’ conceptions from everyday life and the learning of physics and chemistry]. Naturwissenschaften im Unterricht - Physik/Chemie 34 (13), 1-6.
  30. Jung, W., Reul, H., & Schwedes, H. (1977). Untersuchungen zur Einführung in die Mechanik in den Klassen 3-6 [Investigations on the introduction to mechanics in grades 3-6]. Frankfurt am Main, Berlin and München: Diesterweg.
  31. Jung, W., Wiesner, H., & Engelhardt, P. (1981). Vorstellungen von Schülern über Begriffe der Newton‘schen Mechanik: Empirische Untersuchung und Ansätze zu didaktisch-methodischen Folgerungen [Students‘ perceptions on concepts of Newtonian mechanics: Empirical investigation and approaches to didactic-methodological implications]. Bad Salzdetfurth: Verlag Barbara Franzbecker.
  32. Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11, 357–380.
  33. Mandl, H., Gruber, H., & Renkl, A. (1993). Misconceptions and knowledge compartmentalization. In G. Strube & K. F. Wender (Eds.), The cognitive psychology of knowledge (pp. 161-176). Amsterdam: North-Holland.
  34. Merrill, M. D. (1991). Constructivism and instructional design. Educational Technology, 31 (5), 45-53.
  35. Müller, R., Wodzinski, R., & Hopf, M. (2007). Schülervorstellungen in der Physik [Students‘ perceptions in physics]. Köln: Aulis.
  36. Physical Science Study Committee (1960). Physics. Boston: D.C. Heath and Company.
  37. Posner, J. G., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education 66 (2), 211-227.
  38. Reeves, T. (2000, August). Enhancing the worth of instructional technology research through “design experiments” and other developmental strategies. Paper presented at the American Educational Research Association Annual Meeting.
  39. Reinmann, G. (2005). Innovation ohne Forschung? Ein Plädoyer für den Design-Based Research Ansatz [Innovation without research? A plea for the design-based research approach]. Unterrichtswissenschaft, 33 (1), 52-69.
  40. Sadanand, N., & Kess, J. (1990). Concepts in force and motion. The Physics Teacher, 28, 530–533.
  41. Schecker, H. (1988). Von Aristoteles bis Newton - Der Weg zum physikalischen Kraftbegriff [From Aristotle to Newton - The path to the physical concept of force]. Naturwissenschaften im Unterricht Physik Chemie, 36 (4), 7-10.
  42. Schecker, H. (1993). The didactic potential of computer aided modeling for physics education – In: D. L. Ferguson (Ed.), Advanced educational technologies for mathematics and science NATO ASI Series. Computer and Systems Sciences. Vol. 107. Berlin, Heidelberg, New York: Springer.
  43. Scott, R. H., Asoko, H. M., & Driver, R. H. (1992). Teaching for conceptual change: A review of strategies. In R. Duit, F. Goldberg, & H. Niedderer (Eds.): Research in physics learning: Theoretical issues and empirical studies. Kiel: IPN, 310-329.
  44. Shymansky, J. A., Yore, L. D., Treagust, D. F., Thiele, R. B., Harrison, A., Waldrip, B. G., Susan M., Stocklmayer, S. M., Venville, G. (1997). Examining the construction process: A study of changes in level 10 students' understanding of classical mechanics. Journal of Research in Science Teaching, 34 (6), 571–593.
  45. Spatz, V., Wilhelm, T., Hopf, M., Waltner, C., & Wiesner, H. (2019). Teachers using a novel curriculum on an introduction to newtonian mechanics: The effects of a short-term professional development program, Journal of Science Teacher Education 30, 159-178.
  46. Spill, L., & Wiesner, H. (1988). Zur Einführung des dynamischen Kraftbegriffs in der Sekundarstufe I. Bericht über Unterrichtsversuche [Introducing the dynamic concept of force in secondary school. Report on teaching attempts]. In Deutsche Physikalische Gesellschaft (Ed.), Beiträge zur Frühjahrstagung 1988 (pp. 412-417). Bad Honneff: DPG.
  47. Suzuki, M. (2005). Social Metaphorical Mapping of the Concept of Force “CHI‐KA‐RA” in Japanese. International Journal of Science Education, 27(15), 1773-1804.
  48. Tao, P.-K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer-supported physics instruction. Journal of Research in Science Teaching, 36 (7), 859–882.
  49. Thornton, R. (1996). Using large-scale classroom research to study conceptual learning in mechanics and to develop new approaches to learning. In: R. F. Tinker (Ed.), Microcomputer-based labs: Educational Research and Standards. NATO ASI Series. Computer and Systems Sciences. Vol. 156 Berlin, Heidelberg, New York: Springer, 89-114.
  50. Thornton, R., & Sokoloff, D. (1990). Learning motion concepts using real-time micro-computer-based laboratory tools. American Journal of Physics 58 (9), 858 – 867.
  51. Thornton, R. K. & Sokoloff, D. (1997). Assessing student learning of Newton’s laws: The Force and Motion Conceptual Evaluation and the Evaluation of Active Learning Laboratory and Lecture Curricula. American Journal of Physics, 66(4), 338-352.
  52. Traxler, A., Henderson, R., Stewart, J., Stewart, G., Papak, A. & Lindell, R. (2018). Gender fairness within the Force Concept Inventory. Physical Review Special Topics Physics Education Research, 14, [010103].
  53. Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3-34). New York and London: Routledge.
  54. Watts, D. M., & Zylbersztajn, A. (1981). A survey of some children’s ideas about force. Physics Education, 16, 360–365.
  55. Westphal, W. (1967). Die Grundlagen der Dynamik und Newtons 2. Axiom [The foundations of dynamics and Newton's 2nd axiom]. Physikalische Blätter, 48, 558-561.
  56. Whitaker, R. J. (1983). Aristotle is not dead: Student understanding of trajectory motion. American Journal of Physics, 51, 352-357.
  57. Wiesner, H. (1993). Verbesserung des Lernerfolges durch Untersuchungen von Lernschwierigkeiten im Physikunterricht [Improvement of learning success through studies of learning difficulties in physics lessons]. Habilitation treatise, Universität Frankfurt am Main.
  58. Wilhelm, T. (2005). Konzeption und Evaluation eines Kinematik-/Dynamik-Lehrgangs zur Veränderung von Schülervorstellungen mit Hilfe dynamisch ikonischer Repräsentationen und graphischer Modellbildung [Conception and evaluation of a kinematics / dynamics course for the change of students‘ conceptions with the help of dynamic iconic representations and graphic modeling]. Berlin: Logos.
  59. Wodzinski, R., & Wiesner, H. (1994a). Einführung in die Mechanik über die Dynamik. Beschreibung von Bewegungen und Geschwindigkeitsänderungen [Introduction to mechanics about dynamics. Description of movements and changes in velocity]. Physik in der Schule, 32 (5), 164 – 169.
  60. Wodzinski, R., & Wiesner, H. (1994b). Einführung in die Mechanik über die Dynamik. Zusatzbewegung und Newton’sche Bewegungsgleichung [Introduction to mechanics about dynamics. Additional velocity and Newton’s law of motion]. Physik in der Schule 32 (6), 202 – 207.