Research Article

Development of a Test Instrument to Investigate Secondary School Students’ Declarative Knowledge of Quantum Optics

Philipp Bitzenbauer 1 *
More Detail
1 Physics Education Research, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, GERMANY* Corresponding Author
European Journal of Science and Mathematics Education, 9(3), July 2021, 57-79, https://doi.org/10.30935/scimath/10946
OPEN ACCESS   3538 Views   1473 Downloads
Download Full Text (PDF)

ABSTRACT

This article reports the development and validation of a test instrument to assess secondary school students’ declarative quantum optics knowledge. With that, we respond to modern developments from physics education research: Numerous researchers propose quantum optics-based introductory courses in quantum physics, focusing on experiments with heralded photons. Our test instrument’s development is based on test development standards from the literature, and we follow a contemporary conception of validity. We present results from three studies to test various assumptions that, taken together, justify a valid test score interpretation, and we provide a psychometric characterization of the instrument. The instrument is shown to enable a reliable (α = 0.78) and valid survey of declarative knowledge of quantum optics focusing on experiments with heralded photons with three empirically separable subscales.

CITATION (APA)

Bitzenbauer, P. (2021). Development of a Test Instrument to Investigate Secondary School Students’ Declarative Knowledge of Quantum Optics. European Journal of Science and Mathematics Education, 9(3), 57-79. https://doi.org/10.30935/scimath/10946

REFERENCES

  1. Adams, W. K., & Wieman, C. E. (2011). Development and validation of instruments to measure learning of expert-like thinking. International Journal of Science Education, 33, 1289-1312. https://doi.org/10.1080/09500693.2010.512369
  2. AERA (2014). Standards for educational and psychological testing. American Educational Research Association.
  3. Anderson, J. R. (1996). ACT, a simple theory of complex cognition. American Psychologist, 51(4), 355-365. https://doi.org/10.1037/0003-066X.51.4.355
  4. Ayene, M., Kriek, J., & Damtie, B. (2011). Wave-particle duality and uncertainty principle: Phenomenographic categories of description of tertiary physics students’ depictions. Physical Review Special Topics - Physics Education Research, 7, 020113. https://doi.org/10.1103/PhysRevSTPER.7.020113
  5. Bagozzi, R. P., & Baumgartner, H. (1994). The evaluation of structural equation models and hypotheses testing. In R. P. Bagozzi (Hrsg.), Principles of marketing research (p. 386-422). Blackwell.
  6. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238
  7. Bitzenbauer, P., & Meyn, J.-P. (2021). Fostering students' conceptions about the quantum world - results of an interview study. Progress in Science Education, 4(2), 40-51. https://doi.org/10.25321/prise.2021.1079
  8. Bitzenbauer, P., & Meyn, J.-P. (2020). A new teaching concept on quantum physics in secondary schools. Physics Education, 55(5), 055031. https://doi.org/10.1088/1361-6552/aba208
  9. Brell, C., Schecker, H., Theyßen, H., & Schumacher, D. (2005). Computer trifft Realexperiment - besser lernen mit Neuen Medien? [Computer meets real experiment - learn better with new media?]. PhyDid B - Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung.
  10. Britton, E. D., & Schneider, S. A. (2007). Large-scale assessments in science education. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1007-1040). Lawrence Erlbaum.
  11. Bronner, P., Strunz, A., Silberhorn, C., & Meyn, J.-P. Demonstrating quantum random with single photons. European Journal of Physics, 30, 1189. https://doi.org/10.1088/0143-0807/30/5/026
  12. Burde, J.-P., & Wilhelm, T. (2021). Teaching electric circuits with a focus on potential differences. Physical Review Physics Education Research, 16, 020153. https://doi.org/10.1103/PhysRevPhysEducRes.16.020153
  13. Cataloglu, E., & Robinett, R. W. (2002). Testing the development of student conceptual and visualization understanding in quantum mechanics through the undergraduate career. American Journal of Physics, 70, 238-251. https://doi.org/10.1119/1.1405509
  14. Debelak, R., & Koller, I. (2020). Testing the Local Independence Assumption of the Rasch Model With Q3-Based Nonparametric Model Tests. Applied Psychological Measurement, 44(2), 103-117. https://doi.org/10.1177/0146621619835501
  15. di Uccio, S., Colantonio, A., Galano, S., Marzoli, I., Trani, F., & Testa, I. (2019). Design and validation of a two-tier questionnaire on basic aspects in quantum mechanics. Physical Review Physics Education Research, 15, 010137. https://doi.org/10.1103/PhysRevPhysEducRes.15.010137
  16. Doran, R. L, Lawrenz, F. and Helgeson, S. (1994). Research on assessment in science. In D. L. Gabel (Ed.), Handbook of Research on science teaching and learning (pp. 388-442). Macmillan Publishing Company.
  17. Engelhardt, P. (2009). An Introduction to Classical Test Theory as Applied to Conceptual Multiple-choice Tests. Getting Started in PER. https://www.compadre.org/Repository/document/ServeFile.cfm?ID=8807&DocID=1148
  18. Engelhardt, P. V., & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72(1), 98-115. https://doi.org/10.1119/1.1614813
  19. Ericsson, K., & Simon, H. (1998). How to study thinking in everyday life: Contrasting think-aloud protocols with descriptions and explanations of thinking. Mind, Culture, and Activity, 5, 178-186. https://doi.org/10.1207/s15327884mca0503_3
  20. Fischler, H., & Lichtfeldt, M. (1992). Modern physics and students’ conceptions. International Journal of Science Education, 14(2), 181-190. https://doi.org/10.1080/0950069920140206
  21. Fisseni, H. (1997). Lehrbuch der psychologischen Diagnostik [Textbook of psychological diagnostics]. Hogrefe.
  22. Flateby, T. L. (2013). A Guide for Writing and Improving Achievement Tests. https://evaeducation.weebly.com/uploads/1/9/6/9/19692577/guide.pdf
  23. Fornell, C., & Larcker, D. F. (1981). Evaluation structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39-50. https://doi.org/10.1177/002224378101800104
  24. Galvez, E. J., Holbrow, C. H., Pysher, M. J., Martin, J. W., Courtemanche, N., Heilig, L., & Spencer, J. (2005). Interference with correlated photons: Five quantum mechanics experiments for undergraduates. American Journal of Physics, 73, 127. https://doi.org/10.1119/1.1796811
  25. Glug, I. (2009). Entwicklung und Validierung eines Multiple-Choice-Tests zur Erfassung prozessbezogener naturwissenschaftlicher Grundbildung [Development and validation of a multiple choice test to record process-related basic scientific education]. IPN.
  26. Goldhaber, S., Pollock, S. J., Dubson, M., Beale, P., & Perkins, K. K. (2009). Transforming Upper-Division Quantum Mechanics: Learning Goals and Assessment. Physics Education Research Conference 2009, 145-148. https://doi.org/10.1063/1.3266699
  27. Grangier, P., Roger, G., & Aspect, A. (1986). Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences. Europhysics Letters, 1, 173-179. https://doi.org/10.1209/0295-5075/1/4/004
  28. Gray, G.L., Costanzo, F., Evans, D., Cornwell, P., Self, B., & Lane, J. L. (2005). The Dynamics Concept Inventory Assessment Test: A progress report and some results. In Proceedings of the 2005 ASEE Annual Conference and Exposition.
  29. Haertel, E. (2004). Interpretive Argument and Validity Argument for Certification Testing: Can We Escape the Need for Psychological Theory? Measurement: Interdisciplinary Research and Perspectives, 2(3), 175-178.
  30. Haladyna, T. M., & Downing, S. M. (1989). The validity of a taxonomy of multiple-choice item-writing rules. Applied Measurement in Education, 1, 51-78. https://doi.org/10.1207/s15324818ame0201_4
  31. Hammer, T. H., & Landau, J. (1981). Methodological issues in the use of absence data. Journal of Applied Psychology, 66, 574-581. https://doi.org/10.1037/0021-9010.66.5.574
  32. Hanbury Brown, R., & Twiss, R. Q. (1956). Correlation between Photons in two Coherent Beams of Light. Nature, 177, 27-29. https://doi.org/10.1038/177027a0
  33. Henderson, C. (2018). Editorial: Call for Papers Focused Collection of Physical Review Physics Education Research Curriculum Development: Theory into Design. Physical Review Physics Education Research, 14, 010003. https://doi.org/10.1103/PhysRevPhysEducRes.14.010003
  34. Henriksen, E. K., Angell C., Vistnes, A. I., & Bungum, B. (2018). What Is Light? Science & Education, 27, 81-111. https://doi.org/10.1007/s11191-018-9963-1
  35. Hestenes, D., & Halloun, I. (1995). Interpreting the Force Concept Inventory. A response to Huffman and Heller. The Physics Teacher, 33, 502-506. https://doi.org/10.1119/1.2344278
  36. Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, 30, 141-158. https://doi.org/10.1119/1.2343497
  37. Hettmannsperger, R., Müller, A., Scheid, J., Kuhn, J., & Vogt, P. (2021). KTSO-A: KONZEPTTEST-STRAHLENOPTIK – ABBILDUNGEN. Entwicklung eines Konzepttests zur Erfassung von Konzepten der Lichtausbreitung, Streuung und der Entstehung reeller Bilder im Bereich der Strahlenoptik [KTSO-A: CONCEPT TEST RAY OPTICS - ILLUSTRATIONS. Development of a concept test to capture concepts of light propagation, scattering and the creation of real images in the field of ray optics]. Progress in Science Education, 4(1), 11-35.
  38. Hobson, A. (2005). Electrons as field quanta: A better way to teach quantum physics in introductory general physics courses. American Journal of Physics, 73, 630. https://doi.org/10.1119/1.1900097
  39. Holbrow, C. H., Galvez, E. J., & Parks, M. (2002). Photon quantum mechanics and beam splitters. American Journal of Physics, 70, 260. https://doi.org/10.1119/1.1432972
  40. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  41. Huffman, D., & Heller, P. (1995). What Does the Force Concept Inventory Actually Measure? The Physics Teacher, 33, 138-143. https://doi.org/10.1119/1.2344171
  42. Ireson, G. (1999). A multivariate analysis of undergraduate physics students’ conceptions of quantum phenomena. European Journal of Physics, 20(3), 193. https://doi.org/10.1088/0143-0807/20/3/309
  43. Ireson, G. (2000). The quantum understanding of pre-university physics students. Physics Education, 35, 15. https://doi.org/10.1088/0031-9120/35/1/302
  44. Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter Estimates: Some Support for the N:q Hypothesis. Structural Equation Modeling, 10, 128-141. https://doi.org/10.1207/S15328007SEM1001_6
  45. Jones, D. G. C. (1991). Teaching modern physics-misconceptions of the photon that can damage understanding. Physics Education, 26, 93. https://doi.org/10.1088/0031-9120/26/2/002
  46. Jorion, N., Gane, B. D., James, K., Schroeder, L., DiBello, L. V., & Pellegrino, J. W. (2015). An analytic framework for evaluating the validity of concept inventory claims. Journal of Engineering Education, 104(4), 454-496. https://doi.org/10.1002/jee.20104
  47. Kane, M. T. (2001). Current concerns in validity theory. Journal of Educational Measurement, 38(4), 319-342. https://doi.org/10.1111/j.1745-3984.2001.tb01130.x
  48. Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of Educational Measurement, 50(1), 1-73. https://doi.org/10.1111/jedm.12000
  49. Ke, J. L., Monk, M., & Duschl, R. (2005). Learning introductory quantum physics: sensori-motor experiences and mental models. International Journal of Science Education, 27(13), 1571-1594. https://doi.org/10.1080/09500690500186485
  50. Kerlinger, F. N., & Lee, H. B. (2000). Foundations of behavioral research (4th ed.). Wadsworth.
  51. Kimble, H. J., Dagenais, M., & Mandel, L. (1977). Photon Antibunching in Resonance Fluorescence. Physical Review Letters, 39, 691-695. https://doi.org/10.1103/PhysRevLett.39.691
  52. Kline, R. B. (2005). Principles and Praxis of Structural Equation Modeling. Guilford Press.
  53. Kline, T. J. B. (2005). Psychological Testing. A Practical Approach to Design and Evaluation. Sage. https://doi.org/10.4135/9781483385693
  54. Kohnle, A., Bozhinova, I., Browne, D., Everitt, M., Fomins, A., Kok, P., Kulaitis, G. Prokopas, M., Raine, D., & Swinbank, E. (2014). A new introductory quantum mechanics curriculum. European Journal of Physics, 35, 015001. https://doi.org/10.1088/0143-0807/35/1/015001
  55. Krebs, R. (2008). Multiple Choice Fragen? - Ja, aber richtig. Medizinische Fakultät; Institut für Medizinische Lehre IML; Abteilung für Assessment- und Evaluation AAE.
  56. Kyriazos, T. A. (2018). Applied Psychometrics: Sample Size and Sample Power Considerations in Factor Analysis (EFA, CFA) and SEM in General. Psychology, 9, 2207-2230. https://doi.org/10.4236/psych.2018.98126
  57. Landis, J., & Koch, G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310
  58. Liu, X. (2012). Developing Measurement Instruments for Science Education Research. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education. (Springer International Handbooks of Education) (pp. 651-665). Springer. https://doi.org/10.1007/978-1-4020-9041-7_43
  59. Loehlin, J. C. (2004). Latent variable models (4th ed.). Lawrence Erlbaum. https://doi.org/10.4324/9781410609823
  60. MacCallum, R. C., & Widaman, K. F. (1999). Sample Size in Factor Analysis. Psychological Methods, 4(1), 84-99. https://doi.org/10.1037/1082-989X.4.1.84
  61. Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J., & Heuvelen, A. v. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(7), 12-23. https://doi.org/10.1119/1.1371296
  62. Mannila, K., Koponen, I. T., & Niskanen, J. A. (2002). Building a picture of students’ conceptions of wave-particle-like properties of quantum entities. European Journal of Physics, 23, 45-54. https://doi.org/10.1088/0143-0807/23/1/307
  63. Marshman, E., & Singh, C. (2017). Investigating and improving student understanding of quantum mechanics in the context of single photon interference. Physical Review Physics Education Research, 13, 010117. https://doi.org/10.1103/PhysRevPhysEducRes.13.010117
  64. Marshman, E., & Singh, C. (2019). Validation and administration of a conceptual survey on the formalism and postulates of quantum mechanics. Physical Review Physics Education Research, 15, 020128. https://doi.org/10.1103/PhysRevPhysEducRes.15.020128
  65. Mashhadi, A., & Woolnough, B. (1999). Insights into students’ understanding of quantum physics: visualizing quantum entities. European Journal of Physics, 20(6), 511-516. https://doi.org/10.1088/0143-0807/20/6/317
  66. Mayring, P. (2010). Qualitative Inhaltsanalyse: Grundlage und Techniken. Beltz Verlagsgruppe. https://doi.org/10.1007/978-3-531-92052-8_42
  67. McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2010). Design and validation of the Quantum Mechanics Conceptual Survey. Physical Review Physics Education Research, 6(2), 020121. https://doi.org/10.1103/PhysRevSTPER.6.020121
  68. Meinhardt, C. (2018). Entwicklung und Validierung eines Testinstruments zu Selbstwirksamkeitserwartungen von (angehenden) Physiklehrkräften in physikdidaktischen Handlungsfeldern [Development and validation of a test instrument for self-efficacy expectations of (prospective) physics teachers in physics-didactic fields of activity]. Logos. https://doi.org/10.30819/4712
  69. Meinhardt, C., Rabe, T. and Krey, O. (2018). Formulierung eines evidenzbasierten Validitätsarguments am Beispiel der Erfassung physikdidaktischer Selbstwirksamkeitserwartungen mit einem neu entwickelten Instrument [Formulation of an evidence-based validity argument using the example of recording physical-didactic self-efficacy expectations with a newly developed instrument]. Zeitschrift für Didaktik der Naturwissenschaften, 24, 131-150. https://doi.org/10.1007/s40573-018-0079-6
  70. Moosbrugger, H., & Kelava, A. (2012). Testtheorie und Fragebogenkonstruktion [Test theory and questionnaire construction]. Springer Verlag. https://doi.org/10.1007/978-3-642-20072-4
  71. Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70, 200. https://doi.org/10.1119/1.1435346
  72. Mummendey, H. D., & Grau, I. (2014). Die Fragebogen-Methode: Grundlagen und Anwendungen in Persönlichkeits-, Einstellungs- und Selbstkonzeptforschung [The questionnaire method: Basics and applications in personality, attitude and self-concept research]. Hogrefe.
  73. Olsen, R. V. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24(6), 565-574. https://doi.org/10.1080/09500690110073982
  74. Özdemir, G., & Clark, D. B. (2007). An Overview of Conceptual Change Theories. Eurasia Journal of Mathematics, Science and Technology Education, 3(4), 351‑361. https://doi.org/10.12973/ejmste/75414
  75. Pearson, B. J., & Jackson, D. P. (2010). A hands-on introduction to single photons and quantum mechanics for undergraduates. American Journal of Physics, 78, 471-484. https://doi.org/10.1119/1.3494251
  76. Ramlo, S. (2008). Validity and reliability of the force and motion conceptual evaluation. American Journal of Physics, 76(9), 882-886. https://doi.org/10.1119/1.2952440
  77. Robbins, N., & Heiberger, R. (2011). Plotting Likert and other rating scales. Proceedings of the 2011 Joint Statistical Meeting, 1058-1066.
  78. Rost, J. (2004). Lehrbuch Testtheorie – Testkonstruktion [Textbook test theory - test construction]. Verlag Hans Huber.
  79. Russell, D. W. (2002). In Search of Underlying Dimensions: The Use (and Abuse) of Factor Analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28, 1629-1646. https://doi.org/10.1177/014616702237645
  80. Sadaghiani. H., & Pollock, S. J. (2015). Quantum mechanics concept assessment: Development and validation study. Physical Review Special Topics - Physics Education Research, 11, 010110. https://doi.org/10.1103/PhysRevSTPER.11.010110
  81. Schermelleh-Engel, K., Moosbrugger, H. and Müller, H. (2003). Evaluating the fit of structural equation models: tests of significance and descriptive Goodness-of-Fit measures. Methods of Psychological Research Online, 8(2), 23-74.
  82. Schnell, C. (2016). Lautes Denken als qualitative Methode zur Untersuchung der Validität von Testitems. Zeitschrift für ökonomische Bildung, 5, 26-49.
  83. Schumacker, R. E., & Lomax, R. G. (2004). A Beginner’s Guide to Structural Equation Modeling (2nd ed.). Lawrence Erlbaum. https://doi.org/10.4324/9781410610904
  84. Scott, T. F., Schumayer, D., & Gray, A. R. (2012). Exploratory factor analysis of a Force Concept Inventory data set. Physical Review Special Topics - Physics Education Research, 8(2), 020105. https://doi.org/10.1103/PhysRevSTPER.8.020105
  85. Singh, C. (2001). Student understanding of quantum mechanics. American Journal of Physics, 69, 885-895. https://doi.org/10.1119/1.1365404
  86. Singh, C. (2007). Student Difficulties with Quantum Mechanics Formalism. AIP Conference Proceedings, 883, 185-188. https://doi.org/10.1063/1.2508723
  87. Singh, C., & Marshman, E. (2015). Review of student difficulties in upper-level quantum mechanics. Physical Review Special Topics - Physics Education Research, 11, 020117. https://doi.org/10.1103/PhysRevSTPER.11.020117
  88. Spatz, V., Hopf, M., Wilhelm, T., Waltner, C., & Wiesner, H. (2020). Introduction to Newtonian mechanics via two-dimensional dynamics - The effects of a newly developed content structure on German middle school students. European Journal of Science and Mathematics Education, 8(2), 76-91. https://doi.org/10.30935/scimath/9548
  89. Stadermann, H. K. E., van den Berg, E., & Goedhart, M. J. (2019). Analysis of secondary school quantum physics curricula of 15 different countries: Different perspectives on a challenging topic. Physical Review Physics Education Research, 15, 010130. https://doi.org/10.1103/PhysRevPhysEducRes.15.010130
  90. Steif, P. S., & Dantzler, J. A. (2005). A statics concept inventory: Development and psychometric analysis. Journal of Engineering Education, 94, 363-371. https://doi.org/10.1002/j.2168-9830.2005.tb00864.x
  91. Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of common factors [Paper presentation]. Annual Spring Meeting of the Psychometric Society, Iowa City, IA.
  92. Stone, A., Allen, K., Rhoads, T. R., Murphy, T. J., Shehab, R. L., & Saha, C. (2003). The Statistics Concept Inventory: A pilot study. In Proceedings of the 33rd ASEE/IEEE Frontiers in Education Conference (Vol. 1, pp. T3D-1–T3D-6). https://doi.org/10.1109/FIE.2003.1263336
  93. Styer, D. F. (1996). Common misconceptions regarding quantum mechanics. American Journal of Physics, 64, 31-34. https://doi.org/10.1119/1.18288
  94. Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education, 48, 1273-1296. https://doi.org/10.1007/s11165-016-9602-2
  95. Tamir, P. (1998). Assessment and evaluation in science education: Opportunities to learn and outcomes. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 761-789). Kluwer Academic. https://doi.org/10.1007/978-94-011-4940-2_45
  96. Theyßen, H. (2014). Methodik von Vergleichsstudien zur Wirkung von Unterrichtsmedien [Methodology of comparative studies on the effect of teaching media]. In D. Krüger, I. Parchmann and H. Schecker (Eds.), Methoden in der naturwissenschaftsdidaktischen Forschung (pp. 67-79). Springer Verlag. https://doi.org/10.1007/978-3-642-37827-0_6
  97. Thorn, J. J., Neel, M. S., Donato, V. W., Bergreen, G. S., Davies, R. E., & Beck, M. (2004). Observing the quantum behavior of light in an undergraduate laboratory. American Journal of Physics, 72, 1210-1219. https://doi.org/10.1119/1.1737397
  98. Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A Multidimensional Framework for Interpreting Conceptual Change Events in the Classroom. Science Education, 81(4), 387-404. https://doi.org/10.1002/(SICI)1098-237X(199707)81:4<387::AID-SCE2>3.0.CO;2-8
  99. Urban-Woldron, H., & Hopf, M. (2012). Entwicklung eines Testinstruments zum Verständnis in der Elektrizitätslehre [Development of a test instrument for understanding electricity]. Zeitschrift für Didaktik der Naturwissenschaften, 18, 203-229.
  100. van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: a practical approach to modelling cognitive processes. (Knowledge-based systems). Academic Press.
  101. Wuttiprom, S., Sharma, M. D., Johnston, I. D., Chitaree, R., & Soankwan, C. (2009). Development and Use of a Conceptual Survey in Introductory Quantum Physics. International Journal of Science Education, 31(5), 631-654. https://doi.org/10.1080/09500690701747226
  102. Zhu, G., & Singh, C. (2012a). Improving students’ understanding of quantum measurement. I. Investigation of difficulties, Physical Review Special Topics - Physics Education Research, 8, 010117. https://doi.org/10.1103/PhysRevSTPER.8.010117
  103. Zhu, G., & Singh, C. (2012b). Surveying students’ understanding of quantum mechanics in one spatial dimension. American Journal of Physics, 80(3), 252-259. https://doi.org/10.1119/1.3677653