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Abstract

The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students’
difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving
routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly selected
grade 11 students in an urban school in Ontario, Canada. Ten students were later interviewed. In this paper, we discuss
the solutions and interviews of five students.

The results showed that the majority of university/college stream mathematics students were in the transition stage
from arithmetic to algebra. Another prominent feature of these students” problem solving process was their overuse of
procedures without being able to critically evaluate whether these procedures would work or not. They also
demonstrated lack of relational, application, and structural abilities when solving instructional problems. We emphasize
that, in order to be successful, all components of problem solving (procedural work, local focus, strategic skills, and
algebraic reasoning) should work together in a coherent manner, as the main learning challenge in problem solving
remains keeping cohesion between its multiple interconnected components. Therefore, it is necessary that to show them
the arithmetic-algebraic connection in problem solving and to facilitate them to systematically check their answers in
the context of a general strategy.
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Introduction

Research in learning and instruction has given prominent attention to the central role of knowledge. It
is generally assumed that the knowledge base of a person is made up of different components (Gagne,
Briggs & Wagner, 1988; de Jong & Ferguson-Hessler, 1996; Miller & Hudson, 2007). The most widely
discussed components are: conceptual and procedural, apart from other types such as declarative
(Gagne et al., 1988; Miller & Hudson, 2007), strategic (de Jong & Ferguson-Hessler, 1996), and
situational (de Jong & Ferguson-Hessler, 1996). One of the main arguments within the recent debates
on math wars (Klein, 2007; Marshall, 2003; Schoenfeld, 2004) in the US is based on acquiring procedural
skills versus teaching for conceptual understanding. Math wars emanate from the discussion in the
1990s in the US on how mathematics should be taught in high schools. As a result, a reform-based
curriculum and evaluation standards were introduced instead of the traditional curriculum. The new
focus was on teaching mathematics for conceptual understanding rather than teaching for acquiring
procedural skills. However, the discussion is still ongoing on among the mathematics education
community about the pros and cons of the traditional and new approaches.

Recent Canadian mathematics secondary approaches have been similar. More exactly, the Ontario
mathematics curriculum emphasizes the teachers to motivate students to develop their inquiry skills
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in problem solving. In this view, conceptual understanding is considered an essential component in
doing mathematics with understanding. In Ontario, grade 11 mathematics students are divided into
three streams: university, university/college, and workplace. Students in the university/college stream
follow applied mathematics courses in grades 9 and 10. These courses focus on “the essential concepts
of the subject, and develop students” knowledge and skills through practical applications and concrete
examples” (Ontario Ministry of Education, 2005, p.6). Grade 11 university/college students are aged
between 16 and 18 years and intend to pursue mathematics programs that prepare them mainly for
technology-related programs at the college level such as finance, business, human services, hospitality
and tourism, and health sciences (Ontario Ministry of Education, 2007). These students acquire
conceptual and procedural skills from a variety of methods including word problems unlike the
university stream students who study more abstract theories and concepts.

The present Ontario secondary school mathematics curriculum argues that both of these groups of
students should be given opportunities to solve instructional, routine, and non-routine problems
(Ontario Ministry of Education, 2007). Generally, instructional and routine problems are solved by
using the techniques learned in the classroom. In contrast, non-routine problems are typically solved
by using special techniques such as drawing a diagram, constructing a pattern, or solving a similar
problem. Both types of problems improve students’ thinking and reasoning abilities (Ontario Ministry
of Education, 2007).

Algebra is one of the most abstract strands in mathematics and it has its specific challenges. After
widespread promotion by The National Council of Teachers of Mathematics (NCTM), algebra is now
a required part of mathematics curricula in the US and Canada (Greens & Rubenstein, 2008). Australia
has also considered algebra as an important part of their high school mathematics curriculum
(Australian Curriculum, Assessment and Reporting Authority, 2012). However, many attempts to
better prepare students for algebra have not resulted in greater achievement outcomes. Many students
are discontinuing from studying higher-level mathematics because of their lack of success in algebra
(Achieve, 2008; Pegg, 2010).

Many studies in the past have focused on examining the root causes of students’ difficulties in solving
algebraic problems (Clement, 1982; Clement, Lochhead, & Monk, 1981; Kaput & Clement, 1979).
Comparatively, less attention has been devoted to identifying grade 11 university/college stream
students’ specific difficulties in applying conceptual knowledge, procedural skills, strategic
competence, and algebraic thinking. In this study, these students’ levels of algebraic thinking were
examined when they attempted to solve instructional and routine algebra problems. These problems
do not require special solving methods such as solving a similar problem, making a chart or a graph,
use of abstraction etc. Therefore, they could be regarded as intermediate problems between
transitioning from arithmetic to algebra. According to the Ontario Ministry of Education (2005), by
analyzing students’ concrete representations of mathematical concepts and listening carefully to their
reasoning, teachers can gain useful insights into students’ thinking and provide support to enhance
their thinking. Based on these views, two research questions were identified for this study. They were:
1. How do students apply conceptual knowledge, procedural skills, and strategic competence to solve
routine and instructional algebraic problems? 2. What is the interconnected nature of students’
conceptual knowledge, procedural skills, strategic competence, and algebraic thinking? In the next
section, we will briefly discuss the available research underlying these research questions.

Conceptual knowledge and procedural skills

Generally, conceptual knowledge involves an understanding of the meaning of concepts. This
knowledge is necessary to understand problems and generate new strategies or adapt known
strategies to solve original problems (Hiebert & Lefevre, 1986). It is a connected web of information in
which linking relationships are as important as the pieces of discrete information that are linked
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(Goldman & Hasselbring, 1997; Groth & Bergner, 2006; Hiebert & Carpenter, 1992). The linking
process may involve previously learned mathematical concepts that are stored in memory (Bulgren,
Lenz, Deshler, & Schumaker, 1995; Goldman & Hasselbring, 1997). Skemp (1987) used the term
relational understanding, which deals with the knowledge of how to do and why in a problem solving
situation. It refers to the ability to deduce specific rules or procedures from more general
mathematical relationships (Hiebert & Carpenter, 1992).

Procedural knowledge nurtures the skills needed for solving problems. Hiebert and Lefevre (1986)
described two types of procedural knowledge: a) knowledge of the formal language or system of
symbolic representation of mathematical ideas and b) knowledge of the rules or algorithms used to
solve mathematical tasks. They argued that procedural knowledge may or may not be learned
meaningfully but conceptual knowledge must be learned meaningfully. Procedural knowledge is the
ability to follow a set of sequential steps to solve a mathematical task (Bottge, 2001; Carnine, 1997;
Goldman & Hasselbring, 1997; Saenz, 2009). It is a rule-oriented approach to problem solving, which
demands knowing how, but not knowing why (Gagne et al., 1988; Hiebert & Carpenter, 1992). Skemp
(1987) used the term instrumental understanding to describe procedural knowledge, which is the
knowledge of rules. It involves carrying out a procedure in mathematics without necessarily
understanding the reasoning behind those rules.

Although conceptual knowledge and procedural skills can be defined separately, they are
interconnected to form a web in problem solving (Kilpatrick, Swafford & Findell, 2001; Nesher, 1986;
Rittle-Johnson & Koedinger, 2005). However, it is less clear how conceptual knowledge can be elicited
and made to work in an integrated fashion with contextual knowledge and procedural skills in
problem solving (Saenz, 2009). Although various terms such as mathematical proficiency (Kilpatrick,
Swafford & Findell, 2001), mathematical processes, or mathematical strands (Ontario Ministry of
Education, 2005, 2007) are used in mathematics curricula and textbooks, they all imply applying
conceptual knowledge, contextual knowledge, and procedural skills in solving problems.

Algebraic thinking and strategic competence

Algebraic thinking is entirely different from arithmetic thinking. Arithmetical problems are connected,
so that reasoning is direct, whereas algebraic problems are disconnected and they require reasoning
with unknowns (Booth, 1984). This difference causes serious obstacles for the passage from arithmetic
to algebra. Algebraic thinking involves generalization from arithmetic, meaningful use of symbolism,
the study of number structure, the study of patterns and functions, and mathematical modeling (Van
de Walle & Folk, 2008). According to Arcavi (1994), symbol sense is the ability to “understand how and
when symbols can and should be used to display relationships and generalizations” (p. 31). He further
claimed that having a gestalt view of algebraic expressions and equations is a prerequisite for applying
basic procedural skills. Bokhove and Drijvers (2010) divided the gestalt view into: a) recognizing
patterns (pattern salience), b) recognizing signals and symbols (local salience), and c) strategic
decision (what to do next).

As such, algebraic thinking could be considered as the capacity to represent quantitative situations so
that relations among variables become apparent (Driscoll, 1999; Kieran, 1996; Swafford & Langrall,
2000). According to Drijvers, Goddijn, and Kindt (2011), algebraic expertise has a spectrum. First, the
basic skills contain procedural work, local focus, and algebraic calculation. Skills such as solving simple
equations or simplifying expressions often have a local focus. Symbol sense involves choosing a
sensible strategy to interpret the results in a meaningful fashion. Symbol sense in algebra is similar to
number sense in arithmetic. Algebraic reasoning is only possible after reasonably mastering the basic
operations. Hallagan (2006) and Warren (2003) reiterated this arithmetic-algebraic connection and
Drijvers et al., (2011) said that the transition from arithmetic to algebra is difficult for students because
the development of symbol sense has given too little explicit attention in current algebra education.
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The competence in selecting a correct strategy to solve a problem is a key factor in solving any
mathematical problem. Strategic competence is necessary to determine the direction of problem
solving and to understand which stages to follow through in order to reach a solution. A strategy is
defined as a logical series of actions, such as: analyzing information, constructing a problem
representation, selecting tools for the solution, and planning the various steps to be carried out to
reach the solution (de Jong & Ferguson-Hessler, 1996; Posner & McLeod, 1982).

Problem solving and metacognition

An internal part of any mathematical problem solving process is the use of metacognition for
monitoring, evaluating, and overseeing the process (Flavell, 1981; Jacobs & Paris, 1987; Wilson &
Clarke, 2004). Metacognition includes reflection on cognitive activities as well as decisions to modify
these activities at any stage of the process solving (Clement, 1982; Mayer, 1982). For Schoenfeld (1985,
1992), metacognitive processes involve knowing the available problem-solving options, evaluating the
potential usefulness of these options, and choosing the most efficient route to the goal. Metacognition
is involved in choosing and planning what to do, and monitoring what is being done and these
behaviors can be exhibited by statements made in the problem solving process (Flavell, 1981). By
supporting students to develop metacognitive habits, they can become aware of the impact of rigid
associations, inadequate handling of models, inadequate intuitive beliefs, incorrect generalizations
and control the overall impact (Fischbein, 1990).

In line with the National Council of Teachers of Mathematics (NCTM) (2000) principles, the Ontario
secondary school mathematics curriculum also highlights the importance of metacognition in problem
solving. Reflection is a mathematical process, which helps to make conscious decisions and find
alternative ways to perform a task (Ontario Ministry of Education, 2005, 2007). Although it is
conceptually possible to distinguish the nature of cognitive and metacognitive actions, this distinction
is often operationally blurred (Flavell, 1981). Cognition is, of course, implicit in any metacognitive
activity and metacognition may or may not be present during a cognitive act and perhaps this
presence may not be obvious. Although there are difficulties in distinguishing between cognitive and
metacognitive activities in a problem solving situation, metacognition is a necessary act in problem
solving.

Students' difficulties in algebra

There is a rich literature on students’” misconceptions and their sources in algebra. A fundamental
difficulty for students studying algebra is the use of symbolic language. Wagner and Parker (1999)
remarked that the use of two distinct symbol systems (letters and numbers) together in algebra makes
possible confusion. They further stated that within the language of algebra, most linguistic difficulties
relate to variables and expressions and most translation difficulties arise in translating word problems
into equations. According to Sierpinska (2008), students do not have an adequate understanding of
variables and they often think that letters are names for concrete objects based on their old knowledge
of arithmetic. The use of symbols or letters to represent numbers and expressions is the first difficulty
for students. Barrera, Medina and Robayna (2004) categorized algebraic errors into three sources:
algebraic errors originating in arithmetic, use of formulas or procedural rules inadequately
(procedural errors), and errors due to the properties themselves of algebraic language (structural
errors).

Often, intuitive knowledge manipulates and hinders the formal interpretation or the use of
algorithmic procedures (Fischbein, 1994; Fischbein & Barash, 1993). For example, students’

misinterpretation of (a+b)°as a’+b°or 3(a+h)® as 3a”+3b* could be regarded as evolving
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from the intuitive application of the distributive law. Contrary to this view, there are other opinions
from other researchers. Matz (1980, 1982) observed the sources of above errors as the use of a known
rule in a new situation where it is inappropriate. Kirshner (1985) observed the source of the same error
as the overgeneralization of rules. Radatz (1979) viewed this as the application of irrelevant rules or
strategies.

Operating with negative integers and over-generalization of cancelling procedures have their roots in
arithmetic misconceptions (Norton & Irvin, 2007; Stacey & Chick, 2004; Stacey & MacGregor, 1999;
Wu, 2001). This is partly because of the failure of transferring arithmetic understanding to algebraic
contexts (Norton & Irvin, 2007; Stacey & Chick, 2004; Stacey & MacGregor, 1999). Many algebraic
problems are difficult for students, because solving them may require an understanding of the
conceptual aspects of fractions, decimals, negative numbers, equivalence, ratios, percentages, or rates
(Norton & Irvin, 2007; Stacey & Chick, 2004; Stacey & Macgregor, 1999). According to Lee and
Wheeler (1989), the worlds of algebra and arithmetic have no connections at least in the secondary
school teaching practices. There are many covert signs that secondary school algebra has its own rules,
which are not necessarily deducible from arithmetic (Wheeler, 1989). The consequence is that these
covert signs leave many students unsure of the grounds that justify particular algebraic
transformations. Therefore, transitioning from arithmetic to algebra is not an easy process for some
students. Based on the above discussion, our paper will focus on the interconnected nature of
conceptual knowledge, procedural skills, algebraic thinking, and metacognitive actions within the
domain of strategic competence.

Methodology

This paper was based on a study conducted in grade 11 university/college stream mathematics
classrooms in four Ontario public schools to identify students” misconceptions and thinking patterns
in solving algebraic problems (Author 1, 2011). The mixed method research design was sequential
exploratory (Clark & Creswell, 2008), in that, the collection and analysis of quantitative data was
followed by the collection and analysis of qualitative data.

The first phase of the study involved the standardization of the test instrument. In the first phase, a
test instrument with 26 routine (instructional) algebraic problems was administered to 30 randomly
selected grade 11 university/college mathematics students in an urban secondary school in Ontario.
All the test items were based on the Ontario grade 9 and grade 10 mathematics curriculum (Ontario
Ministry of Education, 2005). The test items were under four conceptual areas: variables, expressions,
equations, and word problems. After the first trial, items with a facility value between 0.3 and 0.8 were
selected for a second trial with another 30 students in the same stream in another school. The
reliability coefficient for the test using the Spearman-Brown prophecy formula (Gay, Mills & Airasian,
2006) was 0.8. Four items with low/high facility values were omitted and a second trial was conducted
with another 30 students in the same stream in a different school. The reliability coefficient for the
second trial was 0.88. Three items were omitted based on the same criteria and the final test contained
19 items. All these schools were public secondary schools having all the three streams of mathematics
starting from grade 9. The schools follow the Ontario secondary mathematics curriculum. The
students were aged 16 and 17 and were born in Canada or migrated to Canada at an early age. All of
these sample students had followed the curriculum and textbooks for the university/college
mathematics stream from grade 9.

The final test was administered to 30 randomly selected grade 11 students in the same stream in
another school. These students were from eight different grade 11 classes taught by four different
teachers. After marking the test, students’ incorrect responses for each problem were grouped with
their percentages. Later, ten students were randomly selected to interview from the three conceptual
areas that recorded the highest mean percentage of incorrect responses. These students represented
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the highest incorrect response category in each of the three conceptual areas. Although we did not
interview students from the ‘no response’ category, it is possible that some of these students may have
had the same or similar difficulties as other students. It is possible to have a small number of students
in this category who were not able to attempt the item due to psychological reasons such as
forgetfulness, low enthusiasm, test anxiety etc. In the interviews, students were asked to work out the
problem again while explaining their thinking using a think-aloud procedure (De Jong, 1987; Ericsson
& Simon, 1993). Prompts such as “explain more”, “go ahead” were given and “how” and/or “why”
type of questions were asked whenever necessary. Corrective feedback was not provided during the
process. Each interview lasted between 20 and 30 minutes. The interviews were tape-recorded and
later transcribed.

The interview transcripts in conjunction with students’ written work were used for the analysis.
Interview transcripts were considered as episodes. Student reasoning patterns were discovered with
the help of semantic features in the script, such as ideas, argument chains, use of examples, or
impasses. Through simultaneous analysis and discussion with subject experts, we conjectured about
students’ application of conceptual understanding and procedural skills, selection of strategies and
their level of algebraic thinking. Metacognition was considered as a part of the strategy.

Below, we discuss five different student interviews. Based on our preliminary analysis, word
problems were the most difficult area for students followed by expressions, equations, and variables.
In this paper, we will discuss the interviews for two word problems, two algebraic expressions, and
one equation based on the ratio of the mean error responses for each conceptual area. The interviewed
students in each category belonged to the most common incorrect response in the test. Some students
used different methods in the interview than the test to work out the same problem and came up with
different answers. The problems under variables reported the lowest mean error percentage and we,
therefore, did not consider interviewing students in this area. Another reason for this decision was
that the concept of variable was omnipresent in the test items of the other three conceptual areas.

Results

Our initial quantitative analysis of the test answers showed that students have mainly resorted to use
procedures with a low level of proper conceptual understanding. The mean error percentages for each
conceptual area were: word problems (85%), expressions (79%), equations (48%), and variables (37%).
Based on the ratio of these percentages and the most common error type, we selected five answer
types to discuss below.

Problem 1

This problem under algebraic expressions demands at least two procedural skills -- factorize and
simplify the terms.

xa+ xb

Simplify: .
PRy X + xd

There were 13.3 % correct answers, 43.2 % incorrect answers, and 43.3 % with no response. The most

common incorrect answer was (66.7%) out of the 43.2 % of incorrect answers. The other

2 2
XTab,XTab = a—b, 2x*abd ,Lm, and 2x_ab , which comprised
xd xd d xd 2xd

33.3% of the incorrect answers. The above answers indicate to the arbitrary manipulation of symbols

incorrect response categories were

to produce a single answer. These students have not shown any apparent conceptual understanding
other than using irrelevant procedures.
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a+b

We interviewed Rita for her answer,

R —Rita I — Interviewer

I - Can you please explain your answer?
R - So, Xa+ Xb over X+ Xd . You multiply by this, right? (pointing to Xa). So I divided this,
Xa+xb

because there’s an X over, and divided by another X . So this cancels off with this one ( Xxd
+ X

+ xb

a
) and I got this one also off with this one ( ))((—d )- So, there are really no X’s anymore. So I'll
_l_

write a+Dboverd .

I - (pointing to the first cancelled Xin the denominator) Is there anything remaining here after
you cancelled out the X ’s?

R - No, nothing.

By looking at Rita’s method, we can see that she was able to identify the required operation to solve
the problem, which was separating out the common factor X . This shows that she was able to identify
the correct strategy to solve the problem. However, she followed a conceptually incorrect procedure
by separating the rational expression into two terms. This error occurred while she was carrying out
the strategy and the error was procedural. We believe that she focused her attention on the isolated
terms in the expression rather than the expression as a whole while not paying attention to the
relational nature of the terms. This shows a lack of understanding of the interconnected nature of
individual terms inside a rational expression. Based on this incorrect separation, the rest of her answer

Xa
was technically correct, since — = a. When writing the final answer, she had missed to use an
X

X
important structural property in algebra (—=1). The last two lines of the interview bear some
X

evidence that either she did not use or forgot to use this structural property.

There is no indication that Rita attempted to use metacognition in her problem solving. We think that
a better place to think holistically for her would be to compare her final answer with the initial
problem and check the validity of the answer. We prompted her to do this by asking a question in the
end of the interview. Perhaps, some deep thinking of the possibility of the answer would have led her
to correct her answer. In sum, Rita’s errors were basically related to her misunderstanding of the
relational nature of terms, lack of understanding of structural properties, and incorrect application of
rules and procedures. To a certain extent, using metacognition would have been helpful for her at
least to understand her mistakes. Rita’s thinking was linear and unidirectional. Instead, she should
have used circular thinking to reflect on the answer and check back its consistency with the problem.
It was possible that this reflection would have opened new insights into the problem.

Problem 2

The second problem was simplifying an algebraic expression. By simplifying, we meant to eliminate
the parenthesis. We wanted to examine how students multiply two algebraic fractions when there is
no visible denominator in the first fraction and the second fraction was inside parentheses.

a
Simplify: X (EJ

There were 67.2% incorrect answers, 23% correct answers, and the rest were in the ‘no
answer’ category. In the incorrect category, 36.7% were incorrect answers such as X(axb), x(ab),
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ax
(xa)(xb), or other similar types. Another 19.2% of the incorrect responses were b_ Joshua had this
X

solution and we decided to interview him for his insights. However, he changed his strategy
completely in the interview.

Joshua’s work: x(i) xb = x(axb) = x(ab) = (xa)(xb) = x> + xb+ax+ab.

B

J — Joshua I - Interviewer

I - Can you please explain your answer?
J - You divide...... I mean you multiply b besidesa . So the denominators get cancelled out. So

a
it is just equal to X(Bj xb which is equal to x(ab) .
I - Can you explain it again?

J — You just....because you want to.... like.... cancel out. So to make it easier you just
multiply....you divide......you multiply this numerator. So this is cancelled and it gets
simplified and you get....

I - How did you get (axb) ?

] — Em...when you multiply...no, wait. You multiply these two together which will be like that
and then you put them in here and then you get X times @, which is Xa and X times b,
which is Xb . [He wrote (Xxa)(xb) ]

I - Is there any sign in between Xa and Xb?

J — Well, it is the multiplication sign there in between the brackets, yeah. I think that's how you
do it. And then if you want to simplify, I think you do....so there are two binomials and so you
multiply this first value into the second (drawing arrows from the first X onto both X and b)
and then you multiply this into the next (drawing arrows from @ onto both Xand b). So it

would be X* + xb+ax+ab.

I -How did you get the plus signs?

I — Because you're simplifying it. So even though it is multiplied in here, you just add. Yeah,
that's it.

Joshua’s overall solution method shows a chain of unconnected procedures. He demonstrated a
number of conceptual errors. Selecting an incorrect strategy to solve the problem led to a series of
procedural errors. Joshua’s reasoning for his actions clearly indicates that he has manipulated the
letters not according to accepted procedural rules or with correct conceptual understanding. His
errors started by eliminating the denominator of the second fraction. Finally, Joshua ended up with an
expanded and more complicated answer than the problem itself. He showed no clear objective when
expanding/simplifying the expression.

Apart from committing a number of procedural errors, Joshua had a poor understanding of some
b
structural properties in algebra such as E =1 (b#0) and identifying a binomial. Using a series of

equal signs to equate different algebraic expressions shows his inadequate understanding of the
relational aspect of the equal sign. Joshua seemed to have perceived some misleading visual
similarities between the two algebraic entities X8 and (X+a) when he said that the former is a
binomial. He demonstrated poor relational understanding of algebraic expressions to one another.
Further to poor understanding of structural features of algebra and relational understanding,
Joshua’s lack of ability to apply correct procedures was obvious from his solution. As in the previous
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case of Rita, Joshua’s thinking was also linear and directional. There is no indication that he reflected
on the process or paused back to check the correctness of the solution.

Problem 3

This is a problem in solving a system of linear equations. We did not ask the students to solve the
equations. Instead, we requested them to explain the process verbally. This problem is different from
previous ones as we did not expect the students to follow procedures. Instead, we tested their
conceptual understanding of the procedures.

Consider solving the linear system:a+b =5, a-b=7

a) To eliminate @ from both equations, do you add or subtract the two equations?

b) To eliminate b from both equations, do you add or subtract the two equations?

c) Will you obtain the same solution if you add or subtract the two equations? Explain.

Since the problem has three parts, we give here the percentages for the last part. There were 14%
correct answers, 43% incorrect answers, and another 43% with no answers. The most common
incorrect answer in part (a) was add and in part (b), it was subtract. Other forms of incorrect answers
were: subtract from the first equation and add to the next equation; depends on the equation; and add
to the first equation and subtract from the next equation. We noticed that, in a large number of
incorrect answers, students had tried to consider only one equation at a time to answer the question
rather than considering the system of equations together. We randomly selected Colin from the
highest incorrect response category.
C - Colin I - Interviewer

I- How do you answer part (a).

C - You would subtracta .

I- Why?

C - I don’t know. I think because it is positive here (pointing to @ in the first equation), you
subtract it from there....and from this one (pointing to D in the second equation), you would
have to add instead of subtracting to make it equal to zero.

I - So, what is the answer for part (a)?

C - I think you would have to do both.

I - What is the answer for part (b)?

C - You do the same. You would add and subtract. For this one (pointing to b in the first
equation), you would subtract and for this one (pointing to b in the second equation), you
would add.

I - Can you explain more?

C - For this b (pointing to b in the first equation), since you have to eliminate it, you would
have to subtract it in order to equal to zero and for this one (pointing to b in the second
equation), you would have to add.

I— What is the answer for part (c)?

C - You would not obtain the same solution.

I - Can you explain?

C - Because the sum of it is different. Five is not equal to seven. In this (pointing to the first
equation) @ and b have a different value than this (pointing to the second equation). So, that's
why the sum is different.

I- Do you have a way to verify your answer?

C - Like in a math way?

I - Whatever the way you like.

C - You can just tell because the sum of it... 5 is just not equal to 7... you can just tell from that.
That’s why you can’t get the same solution. Because & and D in this case (pointing to the first
equation) have a different value than & and D in this case (pointing to the second equation).
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I - Can you show me how to solve this linear system of equations?

C - (He wrote up to the step: a+b—5=a—-b—7 and said that he does not know how to
proceed further).

I - What do you mean by solving these two equations?

C - It is called substitution... it is for linear equations.

I - When you are asked to solve the equations, what are you going to find out?

C-You have to find X and VY.

I - In this problem?

C-aandb.

We can infer that Colin explained the solution of equations by hypothesizing the elimination method.
However, his focus was on only one equation at a time and operated directly on the variables to
remove them. Further, he was confused about many rules of the elimination method. He tried to use
the substitution method in an unconventional manner substituting for zero in both equations
(a+b—-5=a—-b—7). This method would work for particular systems of equations such as the given
one but it would not work for others. When he was asked to solve the equations, using the elimination
or any other method, he could not proceed. He did not demonstrate any knowledge of the elimination
method although he mentioned the word eliminate in the interview.

As a whole, Colin did not have the correct conceptual model to apply and solve the two equations
using either elimination or substitution. Only a partial understanding of the principles of substitution
and elimination led him to arrive at incoherent or faulty conclusions. Overall, Colin knew some
structural features of algebra (numbers) such as equating the same amounts (a+ b-5=a-b-7),
stating that negative and positive signs cancels out (although he did not mention that the amounts
should be equal), and explaining the relationship between the two sides of an equation. His lack of
relational reasoning may have prevented him from selecting a correct strategy.

We think that Colin had problems with grasping the relationship between the two equations in order
to formulate a correct strategy. This may have been caused by not understanding the structure of the
linear system of equations. This is evidenced by his attempt to obtain the answer by focusing on only
one equation. Although he mentioned the word substitution, he was not able to select a correct strategy
to solve the problem. We prompted him to reflect on his answer by asking the question “Do you have
a way to verify your answer?” His answers do not indicate that he used metacognitive actions in the
process.

Problem 4
This word problem is an instructional problem based on a day-to-day experience. Students need to
identify the relationships among different quantities to solve the problem.

Mr. Robertson shared his stamp collection with his two sons and the daughter: Javier, Raul and
Teresa. Teresa received 5 times more the number of stamps than Javier did, and 4 less stamps than
those received by Raul. The whole quantity received by Javier and Raul was 22 stamps. How many
stamps did Mr. Robertson give to each child?

There were 20.3% correct answers, 63.4% incorrect answers, and the rest were in the unanswered
category. In the incorrect category, 20% of the students used arithmetic methods, while another 16%
used algebraic methods. The students who used an algebraic method mainly failed to identify a
correct strategy to solve the problem. The students who were unable to form equations with the given
relationships resorted to estimate answers by guessing or working backwards to reach unrealistic
solutions. We categorized Emy’s answer as algebraic as she has attempted to use letters for variables.
She has the following answer in the test, but she used a completely algebraic approach and elaborated
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her algebraic thinking in the interview. This answer shows a mix of algebraic, arithmetic, trial and
error and guessing approaches.

22 stamps for ] & R

-4 from 22 = 18 stamps for T

T+5=3.6; .". 3 stamps for Javier.

3-22=19=R’s stamps

19 -4 =Teresa’'s=15;15+5=3

15 stamps for Teresa

3 for Javier

19 for Raul

Emy articulated a different thinking pattern in a lengthy interview.
E - Emy I - Interviewer

E — T know that Teresa received 5 times...so I represented the number of stamps with X.

I -0k, whatis X?

E — It is the number of stamps Teresa received. And 5 is the number...as she received 5 times
more than Javier and Javier received 4 less than Raul. So I think Teresa’s number is 5X . Raul
has —4X.

I- Why?

E - Javier has —4X because he received 4 less than Raul. Then, I do not know how much Raul
received, so I am going to do 4X—X=22.

I- How did you get that equation?

E — Because Raul received 4 less than Javier and those two numbers are 22. That’s how I am
going to do 4X—X=22. (Solves the equation as 55X 2%; X 2%; X=4.4). This is the
number of Raul’s...the number of Javier's stamps (pointing to X =4.4). Javier received 4.4
stamps. Then to calculate Teresa’s stamps, I am going to do Teresa minus Javier’s stamps... that

5x 26
is 4... so I am going to do 5X—4=22. (Solves the equation as 5X=22+4; ?:?;

X =5.2) This is the number of Teresa’s stamps (pointing to X =5.2).

I - Both times, you had the same X with two different values. Can you explain?

E — In my view, it is right because I used X to represent the number of ...to represent the
stamps....that's why.

I — Stamps of whom?

E — All of them.... like every stamp in the question.

I - Is it the total number of stamps?

E -Yes.

I - Do you think that it is possible to get decimal numbers for the number of stamps?

E — No, because stamps cannot be divided into parts.

I - Can you explain to me your difficulties when you were formulating these equations?

E — Yeah...like.... the total number of stamps is not given and this 5 times (pointing to the
question) and 4 less confuses me sometimes. I know that 5 times is going to be another number
and 4 less is going to be another one. But I do not know how.

Emy’s main difficulty was translating the word problem into algebraic language and selecting a
correct strategy to solve the problem. Her initial difficulty was to select a starting variable. Her
explanations were haphazard and incoherent. She constantly tried to obtain answers in almost every
step of the solution (both in the test and the interview) rather than attempting to understand the
connected nature of the variables. This shows lack of understanding of the relational aspects of the
problem and its steps to one another.
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Emy’s limited conceptual understanding has prevented her from ascribing meaning to the symbols.
For example, she constantly hesitated over symbolizing the correct algebraic quantity for each person
(hesitating over whether X+4 or X—4; 4X or —4X). She also used the same variable for the
number of stamps for different people (or used the same total for every relationship). Overall, she had
a poor symbol sense because all of her attempts to symbolize the given relationships were failed. Her
explanations were always ambiguous and she was not even concerned with the decimal number of
stamps in her answer.

We conclude that Emy’s approach is procedural. In almost every step, she attempted to obtain an
answer. In addition, she did not show a coherent strategy to solve the problem. While solving the
problem, the student often made poor strategic decisions with constant hesitation. Apart from that, it
was difficult for her to realize the mistakes as she did not check back for the correctness of her
answers.

Problem 5

In this word problem, students were asked to build up an algebraic expression. This problem is
different from others as there was no visible procedural work to be carried out. Students need to have
a correct conceptual understanding of variables and patterns to solve the problem.

There are N girl scouts in a parade. There are 8 girls in each row. Write an algebraic expression to find
out how many rows of girl scouts are marching in the parade.

There were 20 % correct answers and 10 % no responses. Seventy percent of the students had
struggled with identifying a correct strategy. Out of the 70%, 20% of the incorrect answers were 8N.

We observed a number of other incorrect responses such as n8, N=—,8n+n,8 and 8xnNn=0, and
r

SO on.

The most common incorrect answer was 8N and we interviewed Andrea in this category. She showed
lack of confidence at the beginning of the interview. However, she managed to get the correct answer
later by establishing an arithmetic-algebraic connection.

A — Andrea I - Interviewer

I - Can you explain your answer please?
A —So...yeah... N girls.... | is not given..... and since there are 8 girls in every row....N is a
variable...and since there are 8 girls in every row... (long pause, no answer. Later drew 8 small
circles in a single column)

I - What are these? (pointing to the circles)

A —They are rows.

I - How many rows?

A —Eight.

I - What does that mean?

A —There are 8 girls in each row and depending on how much rows are..... there will be 8 girls
in each row.

I-So, where’s N here? (pointing to the diagram)

A —Idon’t know. It’s a variable. It can be anything.

I - Okay...then, what's the answer?

A-8n.

I - How did you get it?

n
A —Oh... hold on.... g
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I - Why?
A —Because, say, if it is like 64 girls.... 64 divided by 8 equals how many rows.

Andrea used three different strategies to solve the problem. First, she tried to use intuition. Then she
tried to draw a diagram to solve the problem and finally she was able to establish a connection
between arithmetic and algebra. At one stage, Andrea claimed that 8 is the multiplier (8 rows), and
later she claimed that 8 is the multiplicand (8 girls in each row). When she failed to solve the problem
intuitively, she tried to concretize it by drawing a diagram.

Normally, it is difficult for a student to draw a diagram in this problem, since the total number of girl
scouts is a variable. Andrea correctly identified that N cannot be represented accurately in a diagram.
During her two failed attempts, she demonstrated some poor representational skills. Confusing with
the multiplier and multiplicand is a sign of not properly understanding the structure of the problem.
Overall, Andrea’s strategic thinking was fine as she tried three different strategies and finally she was
able to emulate the knowledge from the numerical example to solve the algebraic problem and vice
versa. In other words, her ability to move back and forth from the specific to the general and the
general to the specific was an indication of her developed algebraic thinking and the understanding of
the structure of the problem.

It is important to note that unlike other students, Andrea was able to pick up a correct arithmetic
example to guide her without any clue from the interviewer. This shows that her relational
understanding of the various forms of the problem was fine. We also can evidence that she has used
metacognition during the interview. After giving the wrong answer 8N at the end, she paused to
think for a while and suddenly came up with the correct answer using a similar arithmetic problem
showing some signs of reflection there.

Conclusion and Discussion

In our analysis, we attempted to identify the interconnected nature of conceptual knowledge and
procedural skills and students’ level of algebraic thinking. The initial difficulty for students who failed
to solve the problems correctly was their inability to select a correct strategy. Their approach to
problem solving was mainly procedural rather than conceptual. They were eager to apply hasty
procedures before identifying a correct strategy. Choosing an incorrect strategy often led to applying
wrong procedures and demonstration of poor conceptual understanding. Another visible feature was
their lack of use of metacognition during the solving process. This has led some of them not to
understand their mistakes during the process and in the final answer.

We presented problem 1 and problem 2 in context-free situations. These two problems mainly
demanded procedural skills. Both Rita and Joshua showed lack of understanding of applying
procedures in context-free situations. It was sometimes difficult for us to find out whether students
carried out procedures with correct conceptual understanding. For example, we were not convinced
whether Rita cancelled out the common term X in problem 1 with un understanding of the

X
underlying structural property of the cancellation, which is —=1. Problems 3, 4, and 5 demanded
X

more conceptual understanding. It is highly unlikely that we could decide whether the students had
correct conceptual understanding of all the required properties, rules, or theories related to the given
problems. For example, we would not be able to assess students’ understanding of the axioms and
properties in algebra that are used in solving algebraic equations. We think that the interplay among
various knowledge components, skills, and strategies used to solve the problem is more important.
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Our study showed that students who failed to select a correct strategy often failed to demonstrate
proper algebraic thinking in the solving process. In order to be able to select a correct strategy,
students need to have an overall view of the problem, not just to have a focus on some isolated parts
of it. Both Emy and Colin failed to find a correct strategy because their focus was on isolated elements
of the problems. Word problems were difficult for students because these problems involved
converting the given relationships into algebraic forms (translation). This is one of the intellectual
challenges for students. An algebraic simplification such as the one in problem 2 does not need this
translation but it involves a translation from one algebraic form to another.

All the students in this study except Andrea had a narrow focus on the problem. They often carried
out procedures without demonstrating proper conceptual understanding. They did not demonstrate
operating control mechanisms during the solving process since they were not aware of their mistakes.
This is a great indication that these students did not consistently use metacognition in their problem
solving practices.

One of the main findings of our study was that these students need to be given concrete examples
rather than abstract situations. Andrea’s work is an example of trying to concretize the situation with
numbers. In that sense, we believe that these students particularly need to see the algebraic-arithmetic
connection in their problems even though they had already passed that stage. They usually were
confused with purely symbolic or algebraic forms. As our sample of students was from four different
teachers, we do not think that the student behaviors occurred due to the teaching method. All of these
students had similar difficulties in using symbols. From the results of our analysis, we only can say
that these students try (or like) to think in terms of concrete situations. We only can infer the reasons
for this behavior and more research is necessary to find the real causes.

Our next finding was that these students were weak in three areas in algebraic problem solving. First,
they lack application skills such as strategic skills, procedural skills, and metacognitive skills. Second,
they lack proper relational skills such as translation of one form to another, usage of the equal sign etc.
Third, they did not show a proper understanding of the structural features of algebra such as
properties, axioms, and other required conceptual features. It is important to note that these three
areas are not mutually exclusive. For example, relational understanding is, in a way, related to
structural features of algebra. A specific example would be the knowledge of the equal sign, which is
both relational and structural. An interconnection exists among three areas in a deeper sense. We
conclude that both conceptual understanding and procedural skills should be applied in varying
degrees when performing tasks in each of the above three areas. To demonstrate proper relational and
structural skills, students need to have more conceptual understanding while application skills need
to have more procedural knowledge.

Many research studies in the past on students’ difficulties in algebra were conducted for younger
groups of students targeting the transition from arithmetic to algebra (Cai & Knuth, 2014; Pycior, 1984;
Usiskin, 1988; Wheeler, 1989; Wu, 2001). Some of these studies have used non-routine, algebraic word
problems. According to Carraher and Earnest (2006), systematic teaching experiments and research is
necessary to know the ramifications of algebra-fied arithmetic. The point of departure in our study was
that our problems were routine classroom exercises and our results were based on an older group of
students. These results were not well documented in the past and we attempted to do that. We
selected students who made errors for the interviews. Therefore, out findings are relevant to the
students in grade 11 university/college stream who have difficulties in solving instructional algebraic
problems. These findings should not be generalized to the whole grade 11 mathematics student
population.
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Usually, grade 11 university/college stream students intend to pursue carriers in finance, business,
human services, health sciences and so on. Unlike university stream students who intend to follow
academic paths, university/college stream students used to think in terms of concrete situations. This
is because of the applied nature of problems that they encounter in their studies and future carriers. In
our view, they need more verbal skills, communication skills, and the ability to read, understand, and
translate information accurately. They need these skills more than the university stream students who
often face abstract problems. The results of our study indicated that these skills should be improved in
them by using concrete word problems and showing them the arithmetic-algebraic connection. In this
way, they will learn with understanding. This approach is again helpful as most of these students
were in the basic stage of applying algebraic concepts and they lacked the symbol sense to represent
problems algebraically. Teachers should provide them with problems that are suitable for their level
of abstraction. Before selecting a strategy, they must be taught to have an overall view of the problem
and not to focus much attention on the individual parts of the problem. This would allow them to
start the algebraic solution with a correct choice of the starting variables without following incorrect
minimal routes (Nesher, Hershkovitz & Novotna, 2003).

Last but not least, students should be trained to develop metacognition strategies in order to evaluate
the reasonableness of their choices. When these techniques are not available to them, they resort to
uneducated guessing and trial-and-error methods (Emy’s work). We conclude that teacher
professional development sessions are excellent venues to discuss these findings and our results
would also be important to researchers and curriculum developers in mathematics education in any
context.
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