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 The aim of this pilot study is to evaluate the relevance of the use of history in mathematics 

education. This paper presents an experiment carried out in France with sixth-grade students 

(n=108) in which an ancient number system is used, an approach that is commonly suggested in 

French sixth-grade textbooks but has previously been unassessed. Based on the data of a pre-

test and a post-test surrounding an activity on an ancient Chinese numeration system, a 

statistical analysis using Rasch modeling shows a specific added value of the history of 

mathematics for students with low abilities in mathematics. For these students, a significant 

increase in observed abilities of +0.67 logit in mean is measured with a large effect size (Cliff 

delta +0.52). This effect is then weighted by considering the regression to the mean (RTM) effect, 

leading to a value around +0.14 logit in mean and a negligible effect size (Cliff delta +0.10). So, 

this pilot study shows the important effect of RTM, which suggests a very strong rebalancing of 

students’ results. In the last part of the paper, we discuss how RTM can nonetheless be positively 

interpreted in this specific context where students’ disorientation is one of the purposes of 

history in mathematics education. 

Keywords: history of mathematics, number system, sixth grade, Rasch model, regression to the 

mean 

INTRODUCTION 

According to the introduction to a recent international ICMI study (Bartolini Bussi & Sun, 2018), whole 

numbers and the fundamental principles of arithmetic can be regarded as the cornerstone of mathematics 

education. Beginning in kindergarten, these concepts are introduced and gradually developed throughout 

elementary school, laying a strong foundation for the concepts and methods taught in secondary school and 

beyond. Nevertheless, even with the recognized importance of this foundational learning and the allocated 

classroom time, students frequently face difficulties in fully comprehending the number system. Numerous 

students demonstrate limited conceptualization of decimal numbers, as observed in the research by Chesné 

and Fischer (2015), and sometimes struggle with whole numbers. According to Houdement and Tempier 

(2019), the grasp of numbers in terms of units, tens, hundreds, and beyond serves as a pivotal factor for 

learning and serves as an indicator of students’ proficiency. These numerical decompositions are present in 

verbal expressions but are not explicitly reflected in written form, creating a disconnect that present a true 
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challenge for certain students. This challenge remains persistent throughout students’ academic journey, 

often resulting in difficulties with numerical tasks (Chambris & Tempier, 2017) and calculations or problem-

solving (Chesné & Fischer, 2015). Clearly, the key to our numerical system lies in the transition from one place 

value to another by consolidating ten representatives of a lower-number unit (e.g., 10) into a single 

representative of the higher-number unit (e.g., 100). This process, particularly in base 10, forms the 

foundation for computational algorithms, demanding proficiency in various place values. As highlighted by 

Houdement and Tempier (2019), early research identified a strong correlation between inadequate numerical 

comprehension and poor performance in computational tasks (Barr, 1978; Lambert & Moeller, 2019; Ma, 

1999; Thanheiser, 2012). Specifically, the authors note variations in performance when transitioning from two-

digit calculations to three-digit calculations, as highlighted in the work of Thomas (2004). It is within these 

calculations that deficiencies in handling larger numbers become evident, as indicated by research conducted 

by Baturo (2000) and Bednarz and Janvier (1992). Furthermore, the significance of classes, such as units, 

thousands, millions, and so on in which place values (units, tens, and hundreds) are reiterated, becomes major 

learning topic. In France, as highlighted in the elementary school curriculum, the addition and subtraction 

algorithms are fundamentally dependent on a thorough comprehension of the numerical system. This 

emphasis prompted CNESCO (Centre National d’Études des Systèmes Scolaires) to propose a 

recommendation titled ‘Associating the learning of operational techniques with the understanding of 

numbers’ following the 2015 consensus conference on initial learning in elementary school (CNESCO, 2015, 

p. 16). This guideline emphasizes that the instruction of written operation procedures (like carrying over in 

addition) should offer students the chance to enhance their numerical comprehension. It underscores the 

interconnection between the numerical system and computational algorithms. In the context of this study, 

we aim to investigate this connection by leveraging historical materials. 

The value of a historical perspective on the evolution of number systems is commonly recognized (Bartolini 

Bussi & Sun, 2018), and there is now some consensus on the potential of history in mathematics education 

(Clark et al., 2018; Fauvel & Van Maanen, 2000). Among the possible interactions between the historical 

approach and the classroom are possible roles as a replacement (for another activity), as a change of scenery 

for the students, and as cultural enlightenment as well as options such as history as a tool or as a learning 

objective in itself or the choice of direct historical inputs or of a session inspired only by history. Undoubtedly, 

an understanding of the progressions leading up to our modern numerical system (including simple tally 

systems, additive systems, multiplicative-additive systems, and positional decimal systems) sheds light on the 

distinctive features and the epistemological hurdles inherent in our current system, particularly from a 

student’s perspective. Consequently, it is unsurprising that the incorporation of historical numeral systems is 

frequently recommended in mathematics education. This approach has an inherently epistemological 

objective because it transforms what is assumed to be familiar into something unfamiliar, effectively 

prompting students to reconsider their conventional understanding of mathematical knowledge, as noted by 

Clark et al. (2018). In France, the historical approach is currently integrated into the majority of sixth-grade 

textbooks, as evidenced by our recent analysis of 22 sixth-grade textbooks published between 2005 and 2021. 

Within these textbooks, excluding documentary pages or inserts, we identified no fewer than 33 exercises 

related to various ancient numeral systems. These exercises encompassed Egyptian hieroglyphic numeration 

(ten), Roman numeration (nine), Babylonian cuneiform numeration (seven), Chinese and Sino-Japanese 

numeration (five), Mayan numeration (one), and Greek numeration (one). These exercises were often 

accompanied by visual illustrations, effectively emphasizing the historical and cultural context of each 

numeral system. In this regard, textbooks help to recall the history of numbering systems from which our 

contemporary system has evolved (Ifrah, 2000). The system used in France, as well as in most countries 

around the world, known as the Indo-Arabic numeral system, bears witness to the history of civilizations 

around the Mediterranean Sea and the scientific exchanges among peoples. Other numbering systems have 

developed independently, such as in Latin America and Asia. Nevertheless, they all share the same 

epistemological foundation in that they were designed to address the need for quantifying quantities. Only 8 

textbooks did not mention ancient numeration. Besides the potential cultural enrichment, the incorporation 

of numerous ancient numeral systems into school exercises is closely intertwined with mathematics 

education. These ancient systems of number representation can be linked, firstly, to learning objectives, as 

outlined by De Vittori (2022), which are specific to our numerical system and the challenges it poses for 
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students (base 10, position). Secondly, they are associated with the role of history in mathematics instruction. 

The experimentation discussed in this paper focuses on an ancient Chinese numerical system, where 

numbers are represented using rods, a system that is relatively well-documented. This Chinese numbering 

system was chosen without any particular link to a cultural anchor among the students for whom it appears 

to be just as exotic as an ancient Egyptian or Mayan system. Only the didactic considerations and mathematics 

learning issues, are considered. This system is briefly outlined, as follows. 

AN ANCIENT CHINESE NUMERAL SYSTEM 

In China, the practice of writing numbers with rods is believed to have emerged around the 2nd century 

BC, as evident in the Suàn shù shū [book on calculations made with sticks] from this era (Anicotte, 2019). This 

numerical system also resurfaced during the Wang Mang period (9-23 A.D.), as noted by Eberhard-Bréard 

(2008), and persisted until at least the early 18th century. It follows a positional decimal system in which distinct 

place values are presented through alternating horizontal and vertical representations. As Anicotte (2019) 

highlights in his edition, the book on calculations originally featured numbers written in the vernacular 

language. For mathematical calculations, numerical values were depicted using sticks on a flat surface, with 

arithmetic operations conducted through the manipulation of these sticks, known as suànchóu. The 

representation of numerical digits was, as follows:  

For units, hundreds, and all even powers of ten, sticks were aligned vertically, and a horizontal bar denoted 

digits greater than five. For tens, thousands, and all odd powers of ten, the sticks were aligned horizontally, 

with a vertical bar indicating digits exceeding five. For instance, 𝍩 𝍣 𝍮 represents the number 146, and 𝍩𝍮 

represents the number 106. In ancient China, the numerical system did not incorporate zero, as observed in 

Anicotte’s (2019) work. To avert confusion, a blank space was sometimes left in its place. Zero made its 

appearance much later in subsequent versions, appearing as a small circle, as evidenced in the arithmetic 

triangle (Eberhard-Bréard, 2008) published in 1303 by Zhu Shijie (1260-1320). Black rods are used for negative 

numbers instead of red ones. In writings dating from the 11th century onwards, these negative numbers were 

distinguished with a slash. This numerical representation system gained widespread use from the 13th 

century, particularly in the context of solving algebraic equations.  

In the experiment outlined in this paper, we focused on the decimal nature of the Chinese rod number 

system and emphasized the distinct representation of even and odd digit ranks in the writing. We intentionally 

accentuated the ambiguity arising from the absence of an explicit zero. In the didactic introduction of the 

system to the students, we deliberately refrained from suggesting the introduction of spaces between digits 

when a number unit was absent. The activity sheet and exercises presented the digits in a simple contiguous 

manner, requiring students to independently determine whether to arrange the symbols vertically or 

horizontally. However, to facilitate this deduction, the chosen numerical values featured only a single missing 

rank. For a more comprehensive exploration of the Chinese rod number system and its associated learning 

challenges, readers can refer to Bartolini Bussi and Sun (2018). 

PRESENT STUDY 

The potential value of incorporating history into mathematics education is world widely acknowledged 

(Clark & al., 2016; Fauvel & van Maanen, 2000). It offers an intriguing approach by providing both cultural 

enrichment and an epistemological perspective. However, while extensive research has been conducted on 

the significance of how students perceive and engage with mathematics (Bråting & Pejlare, 2015; Butuner, 

2015; Lim & Chapman, 2015), several questions remain regarding the impact on the learning process. In their 

international synthesis, Clark et al. (2018) specifically seek empirical evidence to determine if students benefit 

from the use of mathematics history within the classroom. This article, using the introduction of Chinese 

numeration in a sixth-grade context as an example, addresses the following research question: 

RQ. Does history of mathematics help students who underperformed on mathematics tests to improve 

their skills? 
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THEORETICAL FRAMEWORK 

Interactions between history and student contemporary learning are complex but a good example of a 

framework that tries to consider this complexity can be found in the hermeneutic approach developed by 

Jahnke (2014). This pedagogical approach can be succinctly characterized by six principles, as delineated by 

Jahnke and discussed in Fried et al. (2016): 

1. Students delve into a historical source after gaining a solid grasp of the corresponding mathematical 

concept in its modern form and perspective. 

2. Students research and explore information related to the context and biography of the author. 

3. The unique historical aspects of the source are preserved to the greatest extent possible. 

4. Students are encouraged to generate free associations and creative insights. 

5. The teacher emphasizes the need for well-reasoned arguments, while also allowing for diverse 

interpretations that need not be universally shared. 

6. The historical comprehension of a concept is juxtaposed with its contemporary interpretation, 

fostering a process of reflection. 

Hence, the hermeneutic approach can be perceived as a progression culminating in the sixth and ultimate 

step: a juxtaposition between contemporary and historical interpretations of mathematical concepts. At 

various levels, the activities found in French textbooks align quite effectively with the approach advocated by 

Jahnke. Typically, school exercises are introduced after the lesson, serving as fresh scenarios intended to 

reinforce the understanding of concepts. The activity presented in this article is consistent with these 

principles as well. It entails engaging with authentic historical resources to aid in contextualizing previously 

acquired mathematical knowledge. One possible research could be to assess the extent to which the historical 

approach contributes to the reactivation of mathematical concepts in an unconventional and disorienting 

context, as suggested by Barbin et al. (2020). This brings us to the issue of skills assessment and testing in 

schools. 

From a methodological point of view, van den Linden (1986) reminds us of that item response theory (IRT) 

emerged in the 1950s and 1960s as a response to classical test theory. In contrast to classical test theory, 

which concentrates on random representative samples, IRT centers its attention on individuals’ responses to 

individual test items. These responses are treated as the result of a stochastic experiment in which the 

likelihood of a particular response is contingent upon a set of parameters. These parameters can be related 

to the person or the item, such as its difficulty. The model proposed by Rasch (1960) indeed comprises only 

one parameter, which is difficulty. It posits that items have varying levels of difficulty but always the same 

discriminative power.  

According to Rasch, the theoretical distribution of probabilities of correct responses to each item follows 

a logistic function. Since all items share the same distribution shape, the difficulty of a specific item is solely 

represented by the leftward (easier) or rightward (more difficult) shift of the abscissa of the inflection point of 

the curve. The modeling process involves determining these different difficulty levels for all items. Once the 

questions are modeled, one can also determine each student’s proficiency level on the test, using Rasch unit 

known as a “logit”. When a student’s ability matches the item’s difficulty, the probability of success is equal to 

0.50. Rasch’s model is widely used in the field of education, particularly for large-scale assessments like PISA 

(see OECD, 2009, chapter Rasch model), but also in medium and even small-scale empirical research. This 

enables a measure of students’ skills that is relatively independent of contexts and local variations. In all the 

analyses of our experiment, we will also remain at the level of the statistical model. The main benefit of this 

approach is to derive conclusions that are as free as possible from a specific implementation or scale. The 

degrees of difficulty for various tasks and educational objectives are, therefore, guaranteed by the modeling 

itself, rather than depending on particular empirical values or subjective assessments. One can reasonably 

anticipate that the suggested activity, and possibly other activities following a similar model, will yield similar 

outcomes for students, irrespective of the context. 
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PARTICIPANTS 

The experiment took place in France across four separate sixth-grade classes, each taught by a different 

teacher. In total, 108 students (comprising 63 girls [58%] and 45 boys [42%]) participated in either the entirety 

or portions of the experiment. Due to the COVID-19 pandemic, a few students were occasionally absent during 

certain phases of the experiment. However, a total of 86 students successfully completed all exercises and 

activities (n=86). 

METHOD 

Classroom Material 

The experiment was structured into three sections (see Appendix). The initial segment encompassed 

standard mathematical exercises, aiming to assess how the integration of the history of mathematics 

correlated with the usual learning objectives (De Vittori, 2022). Only the items from questions 1, 2, and 3 are 

kept in the study because of their consistency with these specific learning contents. The second segment 

involved the history-centered activity, encompassing an introduction to the Chinese number system along 

with illustrative examples. The concluding part consisted of an assessment of students’ comprehension of the 

Chinese number system as presented during the activity. The initial exercise sheet was assessed during a 

session before the activity, while the activity itself and the second worksheet were both completed within a 

single one-hour session. Data are collected on both the initial exercise sheet and the second one, thereby 

forming a pre- and post-test for the activity. The implementation of the activity is left up to the teacher. Indeed, 

the objective here is to assess the impact of an activity of the same kind as those found in school textbooks; 

that is, an all-in-one tool designed to be utilized without the need for additional input. For the purpose of IRT 

analysis, all tasks and responses were binarized using a stringent criterion, assigning a value of 1 for complete 

success and 0 otherwise. Items within the first exercise sheet featuring standard mathematical tasks were 

designated as M1a, M1b, M2a, M2b, and so forth. Similarly, items involving historical aspects in the final 

exercise sheet were labeled as H1a, H1b, H2a, H2b, and so on. The activity involved a dialogue with the 

teacher, while the two worksheets were individually completed by each student. 

Worksheet 1: Regular School Mathematics/Pre-Test 

The initial worksheet consists of three questions, totaling 12 items. The first question pertains to number 

dictation and serves to assess students’ proficiency in the contemporary number system. In line with the 

learning challenges outlined in the preceding section, the chosen numbers are intended to spotlight potential 

weakness. As such, six items incorporate zeros in specific ranks (2,305, 10,100, 30,095) and large numbers 

(215,230, 6,800,000, 45,900,030). Subsequently, question 2 and question 3 relate to calculation algorithms. In 

question 2, students are tasked with adding three decimal numbers. Aiming to assess their comprehension 

of the various place values in our decimal system, the selected numbers increase in complexity. The initial 

two decimal numbers (3.29+1.05) have decimal portions of equal length. Subsequently, the decimal parts 

have varying lengths (66.7+2.42). Ultimately, the addition of an integer and a decimal (786+8.6). Question 3 

follows a similar structure but focuses on subtraction (66.4-21.3), (24.1-0.25), and (2,043-22.2). 

History-Based Activity 

The discovery activity comprises two pages. The first page provides an explanation of the historical context 

and the mechanics of the Chinese number system. It presents both sets of digits for even and odd place 

values. At the bottom of the page, two examples, in addition to any that the teacher may suggest during the 

classroom session, are provided. These examples, namely 167 and 107, highlight the challenge arising from 

the absence of zero and the alternating symbols between digit ranks. The second page, in alignment with the 

format commonly found in educational textbooks that explore ancient numeration systems, involves 

converting from modern decimal notation to the ancient Chinese system, progressively dealing with larger 

numbers (12, 33, 46, 332, 467, and 5,678). Subsequently, a reverse encoding task is presented for the numbers 

51, 81, and 457. This transition from the Chinese system back to our numbering system offers an opportunity 

to revisit the concept of zero, particularly in the context of the two numbers, 40 and 409 for which it is explicitly 
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clarified that they are both less than 1000 to eliminate any potential ambiguity. The final part of the activity 

involves the reading of an original manuscript dating back to the 7th century, written in the Chinese numerical 

system. It features the numbers 9, 18, 27, 36, 45, 54, 63, 72, and 81. Students are tasked with identifying these 

numbers and recognizing the outcomes of multiplying by 9. The entire discovery activity takes place through 

classroom dialogue, allowing students to engage in discussions with both their peers and the teacher. 

Worksheet 2: Evaluation/Post-Test 

Following the completion of the activity, an assessment is provided to the students. This assessment sheet 

is based on the tasks encountered during the exploration of the Chinese number system. Each task on the 

assessment sheet specifies the ranges to which the numbers belong, and students are allowed to refer to the 

activity sheet throughout the evaluation. The assessment consists of a series of five questions, with each 

question containing two to four items, resulting in a total of 13 items. In the first question, students have to 

write the numbers 73, 221, and 6,789 in Chinese, while the second question asks them to rewrite the numbers 

42, 50, 346, and 306 in our numerical system. These initial exercises involve applying the knowledge acquired 

during the activity and progressively include larger numbers that intentionally incorporate zeros. Questions 

3, 4, and 5 present different challenges related to the concepts of the successor and predecessor of an integer. 

Connected to the ideas of addition and subtraction, the aim is to investigate whether the utilization of an 

alternative decimal system also facilitates comprehension of the fundamental rule of one-for-ten exchange. 

In question 3, students are tasked with writing, using the Chinese system, the successor of 23 and then the 

successor of 29. Similar scenario is presented in exercise 4 and exercise 5, which feature predecessors of 23 

and 80, and of 6,789 and 6,780, respectively. 

Examples of Students’ Answers 

As our study is intended to prepare for large-scale experimentation, it mainly focuses on quantitative 

approaches. Nevertheless, we present below a few examples of student productions in which some common 

difficulties can be observed. The main purpose of the activity is to work on the positional aspect of our 

numbering system, and one can see this learning issue clearly activated in some of the students’ productions. 

The alternating of different ranks and the absence of zero in the Chinese numbering system is quite 

disturbing at first for students. Some will therefore try to write numbers in a comparison with what they know 

about numbers in the French system. For example, a student (Figure 1) correctly re-encodes the numbers 

and identify the hundreds and ones ranks in Chinese, but he still writes 49 instead of 409.  

 

Figure 1. Student trying to deal with absence of zero (answer to asked question “What do you notice?”: “Ones 

are well written but not tens”) (Photo by G. Louaked) 

For the same question, another student does not answer, considering that the Chinese number is simply 

not correct (Figure 2). 

 

Figure 2. Student trying to deal with absence of zero (answer to asked question “What do you notice?”: “It is 

not well placed. One cannot do 𝍬𝍱 but one can do 𝍣𝍱 instead”) (Photo by G. Louaked) 

 Other students reintroduce the zero, but we sometimes see confusion in the order of the different ranks. 

A student writes 04 instead of 40 even though he has understood the Chinese system (Figure 3).  
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Another hesitates between 409 and 904 for the question that was mentioned previously (Figure 4).  

 

Figure 4. Student understanding well zero but hesitant about order (Photo by G. Louaked) 

Finally, goes so far as to introduce a zero into Chinese system (Figure 5), a bit like what appears historically. 

 

Figure 5. Student creating a zero in Chinese system, writing  𝍢0 instead of 𝍢 solely (Photo by G. Louaked) 

As we can see from these examples, which are merely illustrative of a few extreme cases, the introduction 

of the Chinese numbering system destabilizes students’ knowledge, forcing them to mobilize it in another 

way. There is no new knowledge about numbers here. The experiment therefore fits well into the hermeneutic 

approach recalled previously. With the Chinese number system, the goal is to get students to re-examine what 

might appear familiar. 

ANALYSES 

The data were processed in the R environment (R Core Team, 2022) with the psych package (Revelle, 2021) 

for data consistency checking, with the ltm package (Rizopoulos, 2006) for Rasch modeling, and with the effsize 

package (Torchiano, 2020) to compute the effect size index. 

Results 

Out of the 25 items, the overall average score is 19.16, with a standard deviation of 4.95. This outcome 

aligns with the aim of developing a classroom activity designed to be seamlessly integrated into regular 

instruction rather than serving as a certification-focused test (Table 1 and Table 2). The results of student’s t-

test between girls and boys are not significant (t=0.061832; df=78.767; p-value=0.9509). Items were filtered 

based on point biserial correlation with total score item excluded (Table 1 and Table 2). The literature (Slepkov 

et al., 2021) suggests a cutoff value of 0.2. Therefore, items M1a and H2a were removed. For the 23 remaining 

items, the consistency was good, and the presence of sufficient interitem correlations was ensured by a 

Cronbach’s alpha of 0.89. The parallel analysis indicates one principal component and one factor, which 

confirms the uni-dimensionality of the data. Modeling with a Rasch model was therefore possible. 

Table 1. Mean (m), standard deviation (σ), & point biserial correlation with total score item included (PBi inc) 

Item M1a M1b M1c M1d M1e M1f M2a M2b M2c M3a M3b M3c 

m .97 .97 .91 .94 .78 .80 .91 .87 .70 .90 .66 .59 

σ .18 .18 .29 .24 .42 .40 .29 .34 .46 .31 .48 .49 

PBi inc .20 .43 .39 .47 .58 .69 .49 .55 .63 .29 .43 .51 
 

 

 

Figure 3. Student swapping tens & units in case of a zero (answer to asked question “What do you notice?”: 

“There is no unit”) (Photo by G. Louaked) 



 

 European Journal of Science and Mathematics Education, 2024 

European Journal of Science and Mathematics Education, 12(1), 112-127 119 

 

Rasch Modeling & Item Selection 

The fit of Rasch model was checked by bootstrap using the dedicated function in the ltm package 

(Rizopoulos, 2006). A p-value of 0.56 (greater than 0.05) for this model indicates a good overall fit. Items M2c 

and H5b are at the edge of the model, so we will avoid giving them a too significant weight in the analyses 

that follow. 

To allow for a comparison of students’ abilities between the mathematics and history parts, the items were 

paired by difficulty level following the method suggested by Wright (1993). Data from both tests are combined 

and analyzed together. Item calibrations are thus completely equated because they are all expressed at once 

on one common linear scale. One can then select pairs of items showing the same difficulty level. To constitute 

a pair, the difference in difficulty level between an M item and an H item must not exceed 0.2 in order to 

remain above the absolute mean error (Nurul Hafizah et al., 2020). Due to the limitations pointed out above, 

items M2c and H5b were not considered. By applying this process, we obtained six pairs of items of equivalent 

difficulty: M1c-H1a, M2a-H1b, M2b-H1c, M1e-H2c, M1f-H3a, and M3c-H5a (see Table 3 for an overview of all 

items). Score means of participants on these sub-tests are almost the same 4.86 for M items, respectively 4.82 

for H items, over 6. There is therefore no overall added value for all students (Wilcoxon-Mann-Whitney test p-

value 0.5476 not significant), but there could be some, differentiated according to each student’s proficiency 

in mathematics. 

Table 3. Item difficulty (diff) in Rasch model 

Item M1b M1c M1d M1e M1f M2a M2b M2c M3a M3b M3c  

diff -4.13 -2.90 -3.51 -1.62 -1.80 -2.90 -2.46 -1.06 -2.74 -0.85 -0.45  

Item H1a H1b H1c H2b H2c H2d H3a H3b H4a H4b H5a H5b 

diff -3.08 -3.08 -2.33 -1.21 -1.53 0.10 -1.62 -1.21 -2.00 0.59 -0.39 1.11 
 

 

Added Value of History-Based Activity 

To study a potential differentiated added value of the history of mathematics, the M items and the H items 

of each pair were separated and new Rasch modeling on each of these subtests was performed (Figure 6). 

 

Figure 6. Protocol for measuring differentiated added value of historical approach (Figure by T. De Vittori) 

  

Table 2. Mean (m), standard deviation (σ), & point biserial correlation with total score item excluded (PBi ex) 

Item H1a H1b H1c H2a H2b H2c H2d H3a H3b H4a H4b H5a H5b 

m .92 .92 .86 .90 .71 .77 .49 .78 .72 .83 .40 .58 .30 

σ .28 .28 .35 .31 .45 .42 .50 .42 .45 .38 .49 .50 .46 

PBi ex .40 .49 .37 .13 .32 .38 .47 .51 .65 .62 .40 .55 .47 
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To determine whether there was a differentiated benefit according to students’ ability levels, two subsets 

of students were analyzed: the first one with students whose abilities, in Rasch modeling, were less than zero 

on the mathematics M items (23 students) and the second one with those whose ability was greater than zero 

(63 students). This measure of each student’s ability within each group was then compared to that obtained 

on the history-based H items in the second worksheet. 

For the first group, a significant increase (Wilcoxon-Mann-Whitney test p-value 0.003) in observed abilities 

of +0.67 logit in mean was measured. The corresponding Cliff delta index yielded a 0.54 large effect size. For 

the second group, a nonsignificant (Wilcoxon-Mann-Whitney test p-value 0.368) decrease in observed abilities 

of -0.21 logit in mean was measured. It appears that there is an effect observed among students who are the 

least proficient in mathematics. 

As the study involves subsets, it is necessary to check whether the observed effect is not attributed, either 

wholly or partially, to the regression to the mean (RTM). RTM effect, first discussed by Sir Francis Galton in 

1877, is a statistical phenomenon that occurs when studying certain subsets of data (Barnett et al., 2004). It is 

characterized by the tendency for extreme or outlier values within a subset to move closer to the overall 

average when measured again. This effect occurs because extreme values are often the result of random 

fluctuations or measurement error. On subsequent measurements, they are more likely to fall closer to the 

mean. It is important to be aware of this phenomenon when analyzing subsets, as it can lead to misleading 

conclusions if not properly accounted for in statistical analysis. As data in educational assessment is often 

discrete, ordinal, and poorly approximated by a normal distribution, Furrow (2019) suggests calculating 

numerical simulations of a null model to find the predictable impact of RTM. In order to create a null 

hypothesis (H0: “Measured effect is only due to RTM”), one can use permutations of the original data by 

randomly swapping pre- and post-test results (see more theoretical references in Furrow, 2019). This will 

preserve key relationships in the data and RTM effect will remain across all simulated datasets. Relevant 

statistics is calculated for each permutation. According to all principles, we create 10,000 permutations of our 

dataset, select less proficient students, and calculate mean change between pre- and post-test (Figure 7). 

 

Figure 7. RTM effect estimation by bootstrap on 10,000 H0-type sets (RTM effect mean is +0.53 logit [in blue] 

& experimental value is +0.67 logit [in red] &least proficient students subset only) (Graph by T. De Vittori) 

 The overall RTM estimation by the permutation method is +0.53 logit within a 95% confidence interval 

[0.25; 0.77]. The experimental value +0.67 logit is not outside the confidence interval, so H0 cannot be 

rejected, which means that the observed effect cannot be attributed to the added value of the history-based 

approach. Corrected Cliff delta effect size is 0.10 (negligible). 

Discussion 

The experiment just presented was constructed to encourage students to think about numbering systems. 

For this purpose, among the many numbering systems that have been developed throughout history, an 

ancient Chinese numbering system was chosen.  
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This system shares enough similarities with our contemporary system to fit into students’ school curricula. 

However, it also presents several differences, such as its unique writing system, which can facilitate an 

epistemological shift. The utilization of a historical source compels students to reevaluate their mathematical 

knowledge, encouraging them to manipulate both their own conceptions and those derived from the past (De 

Vittori, 2018). This approach is intended to promote learning, as suggested by Jahnke (2014). Both in the 

ordinary mathematics part and in the part with historical material, the learning issues are the same. By 

selecting items of equivalent difficulty in each of the two parts, we were able to assess whether the historical 

approach creates a different situation in which students better express their mathematical skills or not. The 

analysis of the data does not show any overall benefit for the students. This result can be compared with 

Butuner’s (2015) meta-analysis, which reports at best only a weak effect of the use of history of mathematics 

on students, particularly concerning mathematics learning. For students who are generally the least proficient 

in mathematics, our study tends to show an added value of history, which can be largely explained by RTM. 

However, this result should be put into perspective by remembering that the scores obtained by the students 

during this experiment were very high. As we stated in the beginning of the data analysis, students were 

generally successful in these activities and exercises. The overall success rate is 0.77 (19.16 over 25, combining 

all M and H items), and considering only the paired items, the success rate is around 0.80 (4.8 over 6). The 

very principle of RTM is a tendency for the most extreme results to move closer to the mean. This 

phenomenon is certainly unfortunate if the average is low, but it may be desirable if the average is high. A 

simple way of anticipating the magnitude of RTM is to study the correlation coefficient  between pre- and 

post-test. Indeed, Kelly and Pride (2005) remind us that RTM effect is proportional to (1-). The poor 

correlation between our two tests (=0.43, Spearman correlation method, paired items only) suggests a strong 

reshuffling of students’ results. We can thus hypothesize that the history of mathematics creates a situation 

that is sufficiently new to, in some way, reset students’ skills. In this new situation, the students have no 

experience and therefore no presuppositions (good or bad) about their skills. RTM then benefits students by 

reducing inequalities and enabling everyone to succeed, especially the least proficient. In this respect, our 

study is similar to that of Lim and Chapman (2015), who showed a positive effect of mathematics history on 

students’ self-confidence. The authors also pointed out that this effect occurred mostly in the short term and 

tended to disappear after a few months. This could be explained by the observation that, when returning to 

regular school practices, the correlations between students’ results tend to strengthen again. Our experiment 

was solely focused on mathematical learning content and did not evaluate the psycho-emotional aspects, 

which would necessitate a separate and dedicated study. We can therefore go no further in analyzing the 

medium- or long-term effects of historical approach. This leads us to present some limitations of our study. 

Limitations of the Present Study 

Initially, although our experiment’s design aligns with typical textbook content, it remains unique and may 

potentially benefit from a novelty effect, unrelated to the historical material. We have not quantified this 

potential bias. To confirm the validity of our findings, it is advisable to replicate our results using similar 

activities across different classes following the same protocol. Furthermore, a longitudinal examination over 

time involving multiple activities with the same group of students could provide valuable insights. 

The second limitation of our experiment is about to the representativeness of our sample. Our experiment 

was conducted within a single secondary school with different teachers for each class. Although the school is 

generally regarded as representative, potential biases may arise from the tested students’ profiles. We have 

no real reason to believe that this had an impact on our results, but complementary research by randomized 

controlled trials (RCTs) would be desirable. 

CONCLUSIONS 

In this study, we tried to highlight indicators of a potential effect on mathematics performance of a history-

based activity. The objective was to establish, within the framework of a pilot study, the first predicable values 

in statistical analyzes on large data sets. We created and implemented an activity based on an ancient Chinese 

number system, and we assessed students’ skills on certain mathematical tasks before and after the activity. 

The abilities were evaluated via Rasch modeling and then compared.  
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This analysis does not highlight any overall improvement, but it shows a very large effect of RTM. 

Considering a context, where the averages are high and thus denote good success, it might change the usual 

interpretation. Perhaps this reshuffle is precisely, where relevance of historical approach for mathematical 

learning lies. A hypothesis for further research is then that the introduction of a historical perspective induces 

a decorrelation of student results between their initial level in mathematics and that, which they show during 

this type of activity. This reset can be a positive point and a way to understand and statistically measure the 

expected epistemological disorientation (“dépaysement épistémologique” in French) effect claimed by part of 

the international community involved in the use of history in mathematics education (Guillemette, 2018). In 

our dataset (paired items only), the per quartile analysis of RTM effect (R script available online, De Vittori, 

2023) is ranging from +0.52 logit for the first quartile to -0.35 logit for the fourth (Figure 8 and Table 4). 

 

Figure 8. Boxplot of RTM effect for each quartile, in logit (Graph by T. De Vittori) 
 

Table 4. RTM effect mean in logit & 95% confidence interval lower & upper bound for each quartile 

Quartile RTM effect mean 95% confidence interval lower 95% confidence interval upper 

Q1 .52 .21 .82 

Q2 .13 -.20 .39 

Q3 -.33 -.52 -.10 

Q4 -.35 -.53 -.19 
 

According to results, RTM effect is non-negligible and might prove a true epistemological disorientation. It 

would obviously be preferable to have a positive effect on all students, but this will require other studies on 

the development of skills in the medium and long term. Positive or not, it will be necessary in any case to 

control RTM effect, in particular by using an RCT approach as suggested in the literature (Barnett et al., 2004). 

This will be one of the main guidelines of our next large-scale studies. 
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APPENDIX 

Note. Where useful, expected answers are given in green. 

Worksheet (1) 

Question 1 

Question 2 

Question 3 

Main Activity Sheet: A Chinese Numbering System from the 2nd Century A.D. 

In the small circles of the manuscript in Figure A1, numbers are written using a numbering system that 

dates back to the 2nd century A.D. Much later, the French mathematician Blaise Pascal (1623-1662) also found 

this result. The triangle representation was named in his honor. This sequence of numbers written in this 

form is very useful to mathematicians for certain calculations. 

Chinese numbering system 

In the 2nd century A.D., the Chinese wrote numbers using a system that works, as follows: The system is 

decimal. 

Digits of units and hundreds are represented by arranging rods, as shown in Table A4: 

Table A1. Numbers dictation 

2,305 10,100 30,095 215,230 6,800,000 45,900,030 
 

Table A3. Carries out following subtractions using column method 

65.4-21.3 24.1-0.25 2,043-22.2 
 

Table A2. Carries out following additions using column method 

3.29+1.05 66.7+2.42 786+8.6 
 

 

Figure A1. Pascal’s triangle published in 1303 by Zhu Shijie (1260-1320) (Image: Wikipedia) 

Table A4. 

One Two Three Four Five Six Seven Eight Nine 

𝍩 𝍪 𝍫 𝍬 𝍭 𝍮 𝍯 𝍰 𝍱 
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To make reading easier, the rods representing the tens and thousands digits are arranged differently 

(Table A5): For instance,𝍩𝍥𝍯 represents the number 167 and 𝍩𝍯 represents the number 107. 

First examples 

Using the rules above, write the following numbers in 2nd century Chinese: 

12: 𝍠𝍪 

33: 𝍢𝍫 

46: 𝍣𝍮 

332: 𝍫𝍢𝍪 

467: 𝍬𝍥𝍯 

5,678: 𝍤𝍮𝍦𝍰 

Reading an ancient Chinese manuscript 

Write the following numbers using the French system, knowing that all the numbers are less than 1,000: 

𝍤𝍩: 51 

𝍧𝍩: 81 

𝍬𝍤𝍯: 457 

𝍣: 40 

What do you notice about this number? 

Expected answer: There is no zero for the units. 

𝍬𝍱: 409 

What do you notice about this number? 

Expected answer: There’s no zero for the tens. 

The manuscript in Figure A2 is a mathematical text from the 7th century. The last line gives a sequence of 

numbers. Write this list of numbers using the French system. 

 

 

 

 

 

Table A5. 

One Two Three Four Five Six Seven Eight Nine 

𝍠 𝍡 𝍢 𝍣 𝍤 𝍥 𝍦 𝍧 𝍨 
 

 

Figure A2. Manuscript (source: British Museum (Or.8210) International Dunhuang Project [idp.bnf.fr]) 

Table A6. 

Numbers 9, 18, 27, 36 (error in manuscript, symbols flipped vertically), 45, 54, 63, 72, 81 

Do you recognize sequence of numbers? Expected answer: This is nine times multiplication table. 
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Worksheet (2) 

Note. For all this part, the table showing the correspondences between French and Chinese numbers is given to 

each student. 

Question 1 

Question 2 

Question 3 

Question 4 

Question 5 

 

 

❖ 

Table A7. Write following numbers using Chinese system 

73:  𝍦𝍫 221:  𝍪𝍡𝍩 6,789:  𝍥𝍯𝍧𝍱 
 

Table A8. Write following numbers using French system, knowing that all numbers are less than 1,000 

𝍣𝍪: 42 𝍤: 50 𝍫𝍣𝍮: 346 𝍫𝍮: 306 
 

Table A9. Using Chinese system, write number that comes just after each of following numbers (all numbers 

between 10 & 99) 

𝍡𝍬 𝍡𝍭 

𝍡𝍱 𝍢 
 

Table A10. Using Chinese system, write number that comes just before each of following numbers (all 

numbers between 10 & 99) 

𝍡𝍪 𝍡𝍫 

𝍦𝍱 𝍧 
 

Table A11. Using Chinese system, write number that comes just before each of following numbers (all 

numbers between 1,000 & 9,999) 

𝍥𝍯𝍧𝍰 𝍥𝍯𝍧𝍱 

𝍥𝍯 𝍦𝍱 𝍥𝍯𝍧 
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